Madera County Transportation Commission

2024

Regional Transportation Improvement Program

Fiscal Years 2024/25 through 2028/29

APPROVED

November 29, 2023

559.675.0721 • maderactc.org

November 29, 2023

Tanisha Taylor, Executive Director California Transportation Commission 1120 N Street, Room 2233 (MS-52) Sacramento, CA 95814

RE: Submittal of MCTC's 2024 Regional Transportation Improvement Program

Dear Ms. Taylor:

The Madera County Transportation Commission (MCTC) is the Metropolitan Planning Organization (MPO), and Regional Transportation Planning Agency (RTPA) for Madera County. The development of the MCTC 2024 Regional Transportation Improvement Program (RTIP) incorporates input from stakeholders, partner agencies, and the public. The list of projects identified in this RTIP represents some of the Madera region's priority projects.

MCTC has worked closely with Caltrans District 6 Staff to develop the project list in the 2024 RTIP. Caltrans and MCTC staffs meet on a quarterly basis to discuss the status of STIP projects and other regional projects for which Caltrans is either the lead agency or provides direct oversight.

Please feel free to contact myself, or Jeff Findley of my staff at (559) 675-0721 or jeff@maderactc.org if you have any questions or require additional information regarding the MCTC 2024 RTIP.

Patricia Taylor, Executive Director

Madera County Transportation Commission

This page is left blank.

2024 REGIONAL TRANSPORTATION IMPROVEMENT PROGRAM (2024 RTIP)

Table of Contents

Page Number

	<u>Cover Letter</u>	
A.	Overview and Schedule Section 1. Executive Summary Section 2. General Information Section 3. Background of Regional Transportation Improvement Program (RTIP) Section 4. Completion of Prior RTIP Projects Section 5. RTIP Outreach and Participation	1 1 2 3 5
В.	2024 STIP Regional Funding Request Section 6. 2024 STIP Regional Share and Request for Programming Section 7. Overview of Other Funding Included in Delivery of RTIP Projects Section 8. Interregional Transportation Improvement Program (ITIP) Funding/Needs. Section 9. Multi-Modal Corridors - Projects Planned Within the Corridor Section 10. Highways to Boulevards Conversion Pilot Program Section 11. Complete Streets Consideration	6 7 7 10 10
C.	Relationship of RTIP to RTP/SCS/APS and Benefits of RTIP Section 12. Regional Level Performance Evaluation Section 13. Regional and Statewide Benefits of RTIP	11 15
D.	Performance and Effectiveness of RTIP Section 14. Evaluation of the Cost Effectiveness of RTIP Section 15. Project Specific Evaluation	17 20
Ε.	<u>Detailed Project Information</u> Section 16. Overview of Projects Programmed with RIP Funding	20
F.	Appendices Section 17. Project Programming Request (PPR) Forms Section 18. Board Resolution or Documentation of 2024 RTIP Approval Section 19. Fact Sheet Section 20. Documentation on Coordination with Caltrans District (Optional) Section 21. Detailed Project Programming Summary Table (Optional) Section 22. Alternative Delivery Methods (Optional) Section 23. Additional Appendices (Optional)	

This page is left blank.

A. Overview and Schedule

Section 1. Executive Summary

The 2024 Regional Transportation Improvement Program (RTIP) for Madera County is prepared by the Madera County Transportation Commission (MCTC) and proposes how regional discretionary transportation dollars should be programmed. The deadline to submit programming requests for the 2024 STIP is December 15, 2023. The California Transportation Commission (CTC) will adopt the 2024 STIP in March 2024. For purposes of this 2024 RTIP, the 2024 STIP Guidelines and Revised Fund Estimate are the basis of current funding assumptions. The RTIP is updated every two years and submitted to the CTC. This RTIP covers the period from July 1, 2024, through June 30, 2028 (State Fiscal Years 2024/25 – 2028/29).

Section 2. General Information

- Regional Agency Name

Madera County Transportation Commission

- Agency website links for Regional Transportation Improvement Program (RTIP) and Regional Transportation Plan (RTP).

Regional Agency Website Link: MCTC Website

RTIP document link: MCTC Website

RTP link: MCTC Website

- Regional Agency Executive Director/Chief Executive Officer Contact Information

Name Patricia Taylor Title Executive Director

Email patricia@maderactc.org

Telephone (559) 675-0721

- RTIP Manager Staff Contact Information

Name Jeff Findley Title Principal Regional Planner

Address 2001 Howard Road, Suite 201

City/State Madera, CA

Zip Code 93637

Email jeff@maderactc.org Telephone (559) 675-0721

California Department of Transportation Headquarter Staff Contact Information

Name Sudha Kodali Title Chief, Division of Financial Programming

Address Department of Transportation. Mail Station 82. P.O. Box 942874

City/State Sacramento, CA

Zip Code 94274

Email sudha.kodali@dot.ca.gov

Telephone 916-216-2630

- California Transportation Commission (CTC) Staff Contact Information

Name Kacey Ruggiero Title Assistant Deputy Director

Address 1120 N Street City/State Sacramento, CA

Zip Code 95814

Email Kacey.Ruggiero@catc.ca.gov

Telephone 916-707-1388

Section 3. Background of Regional Transportation Improvement Program (RTIP)

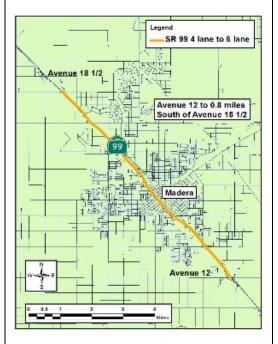
A. What is the Regional Transportation Improvement Program?

The Regional Transportation Improvement Program (RTIP) is a program of highway, local road, transit and active transportation projects that a region plans to fund with State and Federal revenue programmed by the California Transportation Commission in the State Transportation Improvement Program (STIP). The RTIP is developed biennially by the regions and is due to the Commission by December 15 of every odd numbered year. The program of projects in the RTIP is a subset of projects in the Regional Transportation Plan (RTP), a federally mandated master transportation plan which guides a region's transportation investments over a 20-to-25-year period. The RTP is based on all reasonably anticipated funding, including federal, state, and local sources. Updated every 4 to 5 years, the RTP is developed through an extensive public participation process in the region and reflects the unique mobility, sustainability, and air quality needs of each region.

B. Regional Agency's Historical and Current Approach to developing the RTIP

As the Regional Transportation Planning Agency, MCTC is responsible for developing the Madera County Regional Transportation Improvement Program (RTIP). The RTIP serves two functions: Proposes projects and funding reserves for programming in the STIP. Conveys the transportation needs of the Madera County Region. The RTIP is one part of the planning, programming, and monitoring process that occurs in cooperation with local, State and Federal agencies to achieve the ultimate goal of implementing or constructing transportation projects that reflect a well-based and long-term plan. The cycle begins with the preparation of the RTP. The RTP is the long-term twenty-year plan for transportation in Madera County. Based on the findings of the RTP, MCTC prepares the RTIP, which proposes transportation projects to the CTC and covers a period of five years. Simultaneously, Caltrans prepares the Interregional Transportation Improvement Program (ITIP), which nominates highway, rail and other projects that are important to the State. The CTC combines all of the regional RTIPs and the ITIP, creating a single programming document, the STIP. Funds are allocated only to projects that are included in the STIP. After the STIP is adopted, MCTC will prepare the four-year Federal Transportation Improvement Plan (FTIP), which only contains funded projects. In the RTIP, Madera County nominates projects under the Regional Improvement Program (RIP). In the ITIP, Caltrans nominates highway construction projects under the Interregional Improvement Program (IIP). In the past, projects from the regional and interregional programs in a county competed for the same pool of funding, then known as the

county minimum. Now this pool is called the county share, and it is allocated only to the region. The interregional program is now separate, with funds allocated on a statewide basis, and no requirement that any minimum amount be spent in each county.


Section 4. Completion of Prior RTIP Projects (Required per Section 78)

No projects have been completed since the MCTC 2022 RTIP adoption.

- The State Route 41 Passing Lanes project, PPNO: 6606 is currently open to traffic and in the close-out phase.
- State Route 99 Avenue 12 to Avenue 17 project, PPNO: 5335 is currently open to traffic and in the close-out phase.
- State Route 99 Avenue 7 to 12 project, PPNO: 6297 is fully funded with additional ITIP funding for CON and Con Support is currently in the ROW phase.

Project Name and Location	Description	Summary of Improvements/Benefits
State Route 41 Passing Lanes PPNO: 6606	The SR 41 Passing Lanes are located between SR 145 and Road 200 in Madera County at the location of the initial climb from the San Joaquin Valley floor to the Sierra Nevada Mountain Range. Legend SR 41 Passing Lanes SR 41 Passing Lanes Road 208 Road 208	The addition of passing lanes improves safety and overall traffic operations by breaking up traffic platoons and reducing traffic delays caused by inadequate passing opportunities. This project is currently open to traffic.

SR 99 Avenue 12 to Avenue 17 - 4 to 6 Lanes PPNO: 5335 The SR 99 Avenue 12 to Avenue 17 is located within the City of Madera.

Adding additional lanes of this section of SR 99 is needed to improve safety, reduce congestion, and increase connectivity of the highway system, and preserve acceptable facility operation of SR 99 by closing existing gaps/pinch points and "Finishing SR 99". This project is currently open to traffic.

SR 99 Avenue 7 to Avenue 12 - 4 to 6 Lanes (South Madera 6 Lane) PPNO: 6297 The SR 99 Avenue 7 to Avenue 12 is located south of the City of Madera.

Adding additional lanes of this section of SR 99 is needed to improve safety, reduce congestion, and increase connectivity of the highway system, and preserve acceptable facility operation of SR 99 by closing existing gaps/pinch points and "Finishing SR 99".

Section 5. RTIP Outreach and Participation

RTIP Development and Approval Schedule

Action	Date
CTC adopts Fund Estimate and Guidelines	August 16-17, 2023
Caltrans identifies State Highway Needs	September 15, 2023
Caltrans submits draft ITIP	October 15, 2023
CTC ITIP Hearing, South	November 1, 2023
CTC ITIP Hearing, North	November 8, 2023
MCTC adopts 2024 RTIP	November 29, 2023
Regions submit RTIP to CTC	December 15, 2023
Caltrans submits ITIP to CTC	December 15, 2023
CTC STIP Hearing, North	January 25, 2024
CTC STIP Hearing, South	February 1, 2024
CTC publishes staff recommendations	March 1, 2024
CTC Adopts 2024 STIP	March 21-22, 2024

A. Community Engagement

MCTC has an adopted Public Participation process. MCTC consults with State, local agencies, and the public during the project selection process. The RTIP is one part of the planning, programming, and monitoring process that occurs in cooperation with local, State and Federal agencies to achieve the ultimate goal of implementing or constructing transportation projects that reflect a well-based and long-term plan. The MCTC 2024 RTIP cycle begins with the preparation of the RTP. In the RTIP, Madera County nominates projects under the RIP. In the ITIP, Caltrans nominates highway construction projects under the IIP. In the past, projects from the regional and interregional programs in a county competed for the same pool of funding, then known as the county minimum. Now this pool is called the county share, and it is allocated only to the region. The interregional program is now separate, with funds allocated on a statewide basis, and no requirement that any minimum amount be spent in each county.

There is currently one new project requesting ITIP in the 2024 RTIP. Caltrans has requested ITIP funding for the North Madera 6 Lane project (SR 99 Avenue 17 to Avenue 21). In addition to the above community engagement, Caltrans conducted outreach as part of their PBID preparation process.

Planning, Programming, and Monitoring funds are also being requested at this time.

B. Consultation with Caltrans District (Required per Section 20)

Caltrans District: 6

Per Section 17 of the STIP Guidelines, MCTC consults with Caltrans District 6 staff regarding the projects in the RTIP. Caltrans and MCTC staff meet on a quarterly basis to discuss the status of STIP projects and other regional projects for which Caltrans is either the lead agency or provides direct oversight. It should be noted that Caltrans is the lead agency for all current projects in the MCTC 2024 RTIP.

B. 2024 STIP Regional Funding Request

Section 6. 2024 STIP Regional Share and Request for Programming

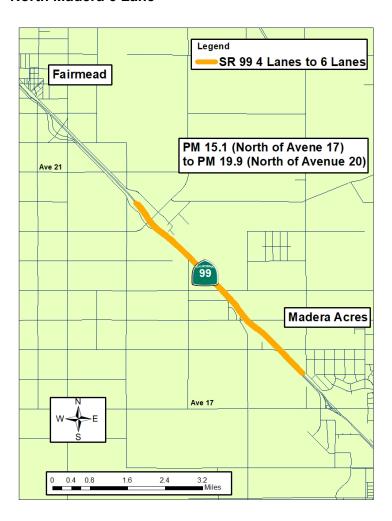
A. 2024 Regional Fund Share Per 2024 STIP Fund Estimate

According to the adopted Fund Estimate, the Madera Region has \$1.7 million in additional programming capacity in the 2024 STIP through Fiscal Year 2028/29. In addition, \$0 of Advanced Project Development Element shares are available to the Madera Region.

Summary of Requested Programming

Project Name and Location	Project Description	Requested RIP Amount
Planning, Programming and	Planning, Programming	\$525,000
Monitoring (PPM) – Madera	and Monitoring	
County Transportation		
Commission		

<u>Section 7. Overview of Other Funding Included With Delivery of Regional Improvement Program (RIP) Projects</u>


The existing RIP Project (South Madera 6 Lane) has numerous funding sources that were previously allocated to the SR 99 Avenue 7 to Avenue 12 project. Existing funding sources include Local Measure (Measure T), SB1 Trade Corridor Enhancement Program (TCEP), Proposition 1B Bond Savings, Interregional Improvement Program (IIP), 2020 Mid-Cycle STIP COVID Relief Funds (RIP), State Highway and Operation Protection (SHOPP) and 2022 Interregional Transportation Improvement Program (ITIP) funds. All of these existing funding sources are being utilized for PE, ROW and CON phases. Additional Construction and Construction Support funds are being requested by Caltrans from the 2024 ITIP in the amount of \$5,500,000. The requested construction funding will allow the completion of this important project interregional project.

Section 8. Interregional Transportation Improvement Program (ITIP) Funding and Needs

The purpose of the Interregional Transportation Improvement Program (ITIP) is to improve interregional mobility for people and goods in the State of California. As an interregional program, the ITIP is focused on increasing the throughput for highway and rail corridors of strategic importance outside the urbanized areas of the state. A sound transportation network between and connecting urbanized areas ports and borders is vital to the state's economic vitality. The ITIP is prepared in accordance with Government Code Section 14526, Streets and Highways Code Section 164 and the STIP Guidelines. The ITIP is a five-year program managed by Caltrans and funded with 25% of new STIP revenues in each cycle. Developed in cooperation with regional transportation planning agencies to ensure an integrated transportation program, the ITIP promotes the goal of improving interregional mobility and connectivity across California.

North Madera 6 Lane

The North Madera SR 99 6 Lane Project will enhance freight mobility and relieve traffic congestion by increasing traffic capacity on State Route (SR) 99 from Avenue 17 Overcrossing to south of the Avenue 21½ Overcrossing. Alternative 1 proposes to construct one additional lane in each direction using the existing median. Alternative 2 consists of partial realignment of the SR 99 centerline to the west, before construction of additional lanes.

This segment of SR 99 is essential to the economy of San Joaquin Valley and is critical to the agricultural and commercial transportation in this region. Almonds are the top commodity in both Fresno and Madera counties producing 533,000 tons, valued at \$2 billion. Milk is the second highest leading commodity in Madera County, valued at approximately \$330 million dollars.

SR 99 is also used by interregional travelers and commuters in Madera and Fresno Counties. The 2021 AADT ranges from 70,000 to 73,000. The 2021 average daily truck traffic within the project limits is approximately 20%. SR 99 is part of the National Highway System as a STRAHNET and a STAA truck route serving San Joaquin Valley.

The continuous six-lane cross section that this project extends will enable the implementation of managed-lane strategies with Vehicle Miles Traveled (VMT) reducing benefits on the SR 99 corridor. Caltrans District 6, in collaboration with the Headquarters (HQ) Sustainability Division,

has developed a potential phased approach for the opportunity to implement a managed-lane facility on SR 99. This project would be part of Phase 2 of the approach to implement the managed-lane strategies, estimated to be implemented in 2030. Phase 2 will be one of the last phases needed to complete 325.8 miles of managed lanes on SR 99 within District 6. Managed-lane strategies with VMT reducing benefits will be identified in an interim deliverable (to be completed no later than December of 2023) in the development of the SR 99 Comprehensive Multimodal Corridor Plan (CMCP) currently in progress. This project is part of the "Finishing SR 99" effort.

Caltrans is requesting a total of \$4,300,000 in 2024 ITIP funding for E&P (PA&ED).

South Madera 6 Lane

The South Madera 6 Lane Project is on SR 99 in Madera County from south of Avenue 7 to north of Avenue 12. It is consistent with the CFMP, SR 99 Business Plan, SR 99 Corridor System Management Plan (CSMP) and the Madera County Transportation Commission RTP. This project will eliminate the 5.8-mile, four lane bottleneck on SR 99 in the southbound and northbound directions, between Fresno and Madera by providing an additional lane in each direction in the median. The scope of work includes increasing vertical clearance at one of the overcrossing structures.

SR 99 in this vicinity is at the upper end of the spectrum for projects with a very high interregional value – with 21 percent truck traffic volume and a relatively high Average Annual Daily Traffic (AADT). This project improves operational efficiency on a critical goods movement corridor, providing greater travel-time reliability, throughput, and velocity of freight movement.

This project accomplishes the goals of the 2021 ITSP by balancing local community and interregional needs and improving safety for all users. The project benefits the surrounding disadvantaged communities by increasing connectivity to employment and production centers, education, services, and other opportunities in the region. The project also meets the needs of the SR 99 Business Corridor Plan.

Madera County's Mid-Cycle RIP funds and SHOPP funds are also programmed for this project. Combining this project with the planned SHOPP project in FY 2025-26 achieves significant efficiencies and substantial savings. This project is part of the "Finishing SR 99" effort.

A total of \$5,500,000 in 2024 ITIP funding is being requested for CON and CON Support.

Madera High-Speed Rail Station Project (Not a part of this RTIP – for informational purposes only)

The project will construct a new station in Madera County for California's Interim High-Speed Rail (HSR) Service between Merced and Bakersfield. Located along Avenue 12, the station will provide Madera County with direct access to HSR service and better connect it with Fresno, the larger Central Valley region, and the rest of California. Future transit-oriented development along the Avenue 12 Corridor, together with improved transit connectivity, will ensure that Madera County can capture the full economic and environmental benefits of HSR and sustainable growth patterns.

SJJPA completed environmental review for the improvements needed for the Madera HSR Station for Interim Service in accordance with the California Environmental Quality Act (CEQA)

on January 22, 2021. SJJPA manages the San Joaquins rail service and is expected to be the Operating Agency for HSR Interim Service. SJJPA is responsible for implementing the improvements needed for the Madera HSR Station. SJJPA is working in partnership with the Madera County Transportation Commission, Madera County, City of Madera, Caltrans, the California State Transportation Agency (CalSTA), and the California High-Speed Rail Authority (CHSRA).

The SJJPA is requesting \$80,000,000 in 2024 ITIP funding.

The most significant intercity rail needs in the Madera Region involves the Amtrak station relocation project and the proposed HSR station on Avenue 12, between SR 99 and SR 41. Future transit-oriented development along the Avenue 12 Corridor, together with improved transit connectivity, will ensure that Madera County can capture the full economic and environmental benefits of HSR and sustainable growth patterns. Please see specific project information above.

Additionally, enhancing freight mobility, increasing safety, and relieving traffic congestion by increasing traffic capacity on SR 99 is a significant interregional highway need in the Madera Region and the entire San Joaquin Valley. Please see specific project information on projects above.

Section 9. Projects Planned Within Multi-Modal Corridors

The following projects previously programmed in prior RTIPs will have an impact within the SR 99 corridor.

State Route 99 - Avenue 12 to Avenue 17 - 4 to 6 Lanes

Adding additional lanes of this section of SR 99 within the city limits of the City of Madera was needed to close existing gaps/pinch points, improve safety, reduce congestion, increase connectivity of the highway system, and preserve acceptable facility operation.

State Route 99 - Avenue 7 to Avenue 12 - 4 to 6 Lanes

Adding additional lanes of this section of SR 99 is needed to close existing gaps/pinch points, improve safety, reduce congestion and increase connectivity of the highway system, and preserve acceptable facility operation of SR 99.

Section 10. Highways to Boulevards Conversion Pilot Program

The cities in the Madera Region will need to be consulted on their desire to participate in a Highways to Boulevards Conversion Pilot Program. SR 152 through the City of Chowchilla and SR 145 through the City of Madera could potentially be candidates for a highways to boulevards conversion pilot program. The cities will need to be involved in any of these discussions.

11. Complete Streets Consideration (per Section 26)

Complete Streets elements will be considered by Caltrans during the development of the SR 99 Avenue 17 to 21 project.

C. Relationship of RTIP to RTP/SCS/APS and Benefits of RTIP

Section 12. Regional Level Performance Evaluation (per Section 22A of the guidelines)

The 2024 RTIP furthers the goals and objectives of MCTC's adopted 2022 Regional Transportation Plan and Sustainable Communities Strategy (RTP/SCS).

The 2022 RTP/SCS contains four primary goals supported by seven objects which offer varying methods and tactics to ultimately achieve progress towards the goals. The goals and objectives share several common themes based on positive outreach feedback and state and federal mandates: creating a safer transportation system, raising economic vitality, maintenance and rehabilitation of existing infrastructure, finding ways to reduce vehicle miles traveled and the harmful emission they generate, and providing better access to more modal options.

The following four goals guide the RTP/SCS as it ventures to achieve its vision and improve the overall quality of life in Madera County through an integrated multimodal transportation system and supportive land use footprint:

- Improve Quality of Life MCTC's plans, programs, and policies will work to improve the
 quality of life in the Madera County region by integrating transportation systems that
 promote access to affordable housing, education resources, jobs, and recreational
 facilities.
- Raise Economic Prosperity MCTC's plans, programs, and policies will facilitate enhanced economic viability of the region by increasing access to education and new job opportunities. A more educated population combined with a low cost of living can attract new investment in the Madera region.
- Cultural Diversity MCTC's plans, programs, and policies will respect the region's wide variety of cultures and subcultures (each having unique needs and perspectives) by facilitating a range of transportation modes and housing choices designed to benefit the County's diverse population.
- Promote Public Health and a Cleaner Environment MCTC's plans, programs, and policies will give preference to new development and economic prosperity in ways that ensure the health of its citizens, maintain and enhance the surrounding environment (cultural and socioeconomic resources), and those ways that enhance the regions financial stability over time.

These goals are supported by objectives reflective of necessary steps to guide improvements to Madera County's transportation system, development and economic growth, and wellbeing through the next 24 years. The objectives below most directly related to the projects in this RTIP include:

• Provide equitable access to transportation options for all, regardless of race, income, national origin, age, location, physical ability, or any other factor.

- Develop a transportation network able to support the safe and efficient movement of people and goods and increase economic vitality.
- Improve environmental conditions through integrated planning of transportation and land uses and achieve state and federal air quality improvement mandates.
- Improve mobility for all travelers through a variety of accessible modal options.
- Foster growth with a mix of land use types able to facilitate mixed uses, infill and compact development, and preserve agricultural land and natural resources.

As shown in Table B1, by the horizon year of 2046 in the 2022 RTP/SCS, the 2024 RTIP assists in the reduction of daily vehicle miles traveled (VMT) and CO2 emissions per capita.

MCTC's 2024 RTIP will assist the Madera region's ability to achieve its goals and objectives. The projects contained in this RTIP are consistent with and help implement the region's transportation projects contained in MCTC's 2022 RTP/SCS. Furthermore, the programming of MCTC's 2024 RTIP is consistent with the policies, procedures, and funding capacity established in the 2024 STIP Guidelines and STIP Fund Estimate. The North Madera 6 Lane, South Madera 6 Lane, and the Madera High-Speed Rail Station Project will assist the region's ability to improve safety, reduce congestion and increase connectivity of the highway system, increase multi-modal connectivity, enhance interregional commuter rail and preserve acceptable facility operation of SR 99.

A. Regional Level Performance Indicators and Measures (per Appendix B of the STIP Guidelines).

2022 RTP/SCS Housing				
	Scenario 1	Scenario 2	Preferred Scenario	
2020	Housing			
2020 Single-family housing	42,078.0	42,064.0	42,048.0	
2020 Multi-family/attached housing	7,702.0	7,716.0	7,730.0	
2020 Percent single-family housing	84.53%	84.50%	84.47%	
2020 Percent multi-family/attached housing	15.47%	15.50%	15.53%	
Future	Housing			
2035 Single-family housing	48,958.0	48,846.0	48,783.0	
2035 Multi-family/attached housing	9,844.0	9,977.0	10,053.0	
2035 Percent single-family housing	83.26%	83.04%	82.91%	
2035 Percent multi-family/attached housing	16.74%	16.96%	17.09%	
2046 Single-family housing	53,591.0	53,382.0	53,266.5	
2046 Multi-family/attached housing	11,231.0	11,443.0	11,555.5	
2046 Percent single-family housing	82.67%	82.35%	82.17%	
2046 Percent multi-family/attached housing	17.33%	17.65%	17.83%	
Housing Gro	owth from 2020			
			1	
2035 New single-family housing	6,880.0	6,782.0	6,735.0	
2035 New multi-family/attached housing	2,142.0	2,261.0	2,323.0	
2035 Percent single-family housing growth	76.26%	75.00%	74.35%	
2035 Percent multi-family/attached housing growth	23.74%	25.00%	25.65%	
			T	
2046 New single-family housing	11,513.0	11,318.0	11,218.5	
2046 New multi-family/attached housing	3,529.0	3,727.0	3,825.5	
2046 Percent single-family housing growth	76.54%	75.23%	74.57%	
2046 Percent multi-family/attached housing growth	23.46%	24.77%	25.43%	

2022 RTP/SCS Travel Metrics				
Mode Share	Scenario 1	Scenario 2	Preferred Scenario	
2020 Mode Share				
Drive alone	297,804	297,804	297,804	
Two-person shared ride	128,958	128,958	128,958	
Three-plus person shared ride	172,383	172,383	172,383	
Transit	2,411	2,411	2,411	
Walk	6,250	6,250	6,250	
Bike	87,117	87,117	87,117	
Other				
Home to work average trip distance (miles)	9.37	9.37	9.37	
Home to work trip average time (minutes)	15.24	15.24	15.24	
2035 Mode Share				
Drive alone	339,106	339,770	339,988	
Two-person shared ride	149,693	149,964	150,052	
Three-plus person shared ride	202,921	203,082	203,168	
Transit	2,782	2,789	2,791	
Walk	7,893	7,924	7,933	
Bike	106,888	107,468	107,502	
Other				
Home to work average trip distance (miles)	8.76	8.72	8.67	
Home to work trip average time (minutes)	14.69	14.62	14.56	
2046 Mode Share				
Drive alone	366,306	367,463	367,699	
Two-person shared ride	163,926	164,365	164,429	
Three-plus person shared ride	224,654	224,917	224,931	
Transit	3,036	3,043	3,059	
Walk	9,047	9,096	9,118	
Bike	120,580	121,516	121,703	
Other				
Home to work average trip distance (miles)	8.42	8.36	8.26	
Home to work trip average time (minutes)	14.42	14.32	14.20	

2022 RTP/SCS Environmental Quality				
Metric	Scenario 1	Scenario 2	Preferred Scenario	
Farmland Acres Consumed	4,642	3,835	3,664	
% Housing Within 0.25 Miles of Transit	2.71%	2.98%	3.10%	
% Employment Within 0.25 Miles of Transit	24.92%	25.81%	26.40%	
Reduction in CO2 per capita from 2005 to 2035	-21.60%	-22.05%	-22.12%	
Reduction in VMT2 per capita from 2005 to 2035	-18.22%	-18.73%	-18.78%	

Section 13. Regional and Statewide Benefits of RTIP

The existing projects programmed in the RTIP are intended toward advancing the region and State by finishing the SR 99 gap closure segments and increasing ridership on commuter rail.

SR 99 is one of the most important north-south highways on the National Highway System and on the National Highway Freight Network. SR 99 is crucial to the economic vitality of the State of California and the Central Valley and is heavily used by international shippers, commuters, and recreational travelers. Approximately half of the State's goods movement passes through the Valley with destinations at ports, major urban centers in California, other states, and other countries.

The North Madera 6 Lane and South Madera 6 Lane projects are located near the geographic center of both California and the San Joaquin Valley, the breadbasket of the nation and the source of much of the nation's agricultural export income.

The projects represent a major lynchpin for goods movement and passenger travel along SR 99 to and through the City of Madera.

Completing these gaps on sections of SR 99 within and adjacent to the City of Madera is needed to improve safety, reduce congestion, increase connectivity for goods movement and general traffic on the national highway system, and to preserve acceptable facility operation.

The Madera High-Speed Rail Station project is located on Avenue 12, Madera County's busiest east/west corridor connecting SR 99 and SR 41.

The project will provide service connection with the San Joaquins Amtrak and transfer to High Speed Rail service when the initial operating segments between Merced and Bakersfield commence in 2030.

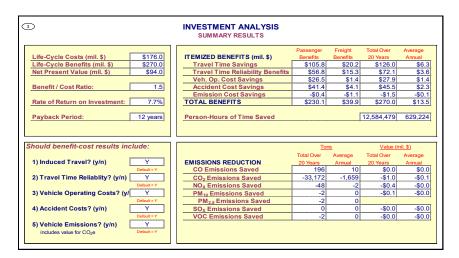
The project is located in a more regionally accessible area then the existing Madera Amtrak station. The project is in close proximity to the SR 99/Avenue 12 interchange and provides a more direct route for access for residents from the City of Madera, City of Chowchilla, and residents in the mountains and foothills of eastern Madera County. The location has ridership capture potential for north City of Fresno and City of Clovis residents. The project is on the property adjacent to the Madera Community College and currently served by Madera County and City of Madera fixed route transit services.

The project is on the property adjacent to the Madera Community College and currently served by Madera County and City of Madera fixed route transit services.

The project location site is identified as an interregional commuter rail hub in the Madera College Specific Area Plan. The County of Madera in coordination with the City of Madera, MCTC, Madera Community College, Caltrans, CalSTA, CHSRA and SJJPA is currently utilizing a Caltrans Sustainable Planning Grant to complete a Madera Station Transit Orientated Development (TOD)Master Plan for the project. The station will kick-off new TOD, mixed land uses and affordable housing in the Madera Community College and Station area.

D. <u>Performance and Effectiveness of RTIP</u>

Section 14. Evaluation of Cost Effectiveness of RTIP (Required per Section 22B)


2022 RTP/SCS Housing				
	Scenario 1	Scenario 2	Preferred Scenario	
2020 F	lousing			
2020 Single-family housing	42,078.0	42,064.0	42,048.0	
2020 Multi-family/attached housing	7,702.0	7,716.0	7,730.0	
2020 Percent single-family housing	84.53%	84.50%	84.47%	
2020 Percent multi-family/attached housing	15.47%	15.50%	15.53%	
Future	Housing			
2035 Single-family housing	48,958.0	48,846.0	48,783.0	
2035 Multi-family/attached housing	9,844.0	9,977.0	10,053.0	
2035 Percent single-family housing	83.26%	83.04%	82.91%	
2035 Percent multi-family/attached housing	16.74%	16.96%	17.09%	
2046 Single-family housing	53,591.0	53,382.0	53,266.5	
2046 Multi-family/attached housing	11,231.0	11,443.0	11,555.5	
2046 Percent single-family housing	82.67%	82.35%	82.17%	
2046 Percent multi-family/attached housing	17.33%	17.65%	17.83%	
Housing Grov	wth from 2020			
2035 New single-family housing	6,880.0	6,782.0	6,735.0	
2035 New multi-family/attached housing	2,142.0	2,261.0	2,323.0	
2035 Percent single-family housing growth	76.26%	75.00%	74.35%	
2035 Percent multi-family/attached housing growth	23.74%	25.00%	25.65%	
2046 New single-family housing	11,513.0	11,318.0	11,218.5	
2046 New multi-family/attached housing	3,529.0	3,727.0	3,825.5	
2046 Percent single-family housing growth	76.54%	75.23%	74.57%	
2046 Percent multi-family/attached housing growth	23.46%	24.77%	25.43%	

2022 RTP/SCS Travel Metrics				
Mode Share	Scenario 1	Scenario 2	Preferred Scenario	
2020 Mode Share				
Drive alone	297,804	297,804	297,804	
Two-person shared ride	128,958	128,958	128,958	
Three-plus person shared ride	172,383	172,383	172,383	
Transit	2,411	2,411	2,411	
Walk	6,250	6,250	6,250	
Bike	87,117	87,117	87,117	
Other				
Home to work average trip distance (miles)	9.37	9.37	9.37	
Home to work trip average time (minutes)	15.24	15.24	15.24	
2035 Mode Share				
Drive alone	339,106	339,770	339,988	
Two-person shared ride	149,693	149,964	150,052	
Three-plus person shared ride	202,921	203,082	203,168	
Transit	2,782	2,789	2,791	
Walk	7,893	7,924	7,933	
Bike	106,888	107,468	107,502	
Other				
Home to work average trip distance (miles)	8.76	8.72	8.67	
Home to work trip average time (minutes)	14.69	14.62	14.56	
2046 Mode Share				
Drive alone	366,306	367,463	367,699	
Two-person shared ride	163,926	164,365	164,429	
Three-plus person shared ride	224,654	224,917	224,931	
Transit	3,036	3,043	3,059	
Walk	9,047	9,096	9,118	
Bike	120,580	121,516	121,703	
Other				
Home to work average trip distance (miles)	8.42	8.36	8.26	
Home to work trip average time (minutes)	14.42	14.32	14.20	

2022 RTP/SCS Environmental Quality				
Metric	Scenario 1	Scenario 2	Preferred Scenario	
		Г		
Farmland Acres Consumed	4,642	3,835	3,664	
% Housing Within 0.25 Miles of Transit	2.71%	2.98%	3.10%	
% Employment Within 0.25 Miles of Transit	24.92%	25.81%	26.40%	
Reduction in CO2 per capita from 2005 to 2035	-21.60%	-22.05%	-22.12%	
Reduction in VMT2 per capita from 2005 to 2035	-18.22%	-18.73%	-18.78%	

Section 15. Project Specific Evaluation (Required per Section 22D)

Caltrans Generated Benefit/Cost Estimates North Madera 6 Lane (SR 99 Avenue 17-21)

Please see PPR in Section 17 for additional analysis.

E. <u>Detailed Project Information</u>

Section 16. Overview of Projects Programmed with RIP Funding

There are no new projects proposed to use RIP funding in the 2024 RTIP.

F. Appendices

- Section 17. Projects Programming Request Forms
- Section 18. Board Resolution or Documentation of 2024 RTIP Approval
- Section 19. Fact Sheet
- Section 20. Documentation on Coordination with Caltrans District (Optional)
- **Section 21. Detailed Project Programming Summary Table (Optional)**
- **Section 22. Alternative Delivery Methods (Optional)**
- Section 23. Additional Appendices (Optional)

APPENDICES SECTION 17 PROJECTS PROGRAMMING REQUEST FORMS

NORTH MADERA 6 LANE STATE ROUTE 99 – AVENUE 17 TO 21 Project Programming Request

STATE OF CALIFORNIA • DEPARTMENT OF TRANSPORTATION PROJECT PROGRAMMING REQUEST (PPR)

PRG-0010 (REV 08/2020)

PPR ID ePPR-D06-2024-0001 v0

-						
Amendment (Existin	ng Project) YES	⊠ NO			Date 07/14/2023 16:12:09	
Programs						
District	EA	Project ID	PPNO Nominating Agency		ng Agency	
06	0Y360	0619000052	7004	Caltrans District 6		
County	Route	PM Back	PM Ahead	Co-Nominating Agency		
Madera County	99	15.100	19.900	Madera County Transportation Commission		
				MPO	Element	
				MCTC	Capital Outlay	
Project Manager/Contact		Phone	Email A	Address		
Mike Day			559-383-5247	mike.day@	mike.day@dot.ca.gov	
Project Title					. \	

North Madera 99 6-lane

Location (Project Limits), Description (Scope of Work)

In Madera County from 0.5 miles north of Avenue 17 Overcrossing to 1.0 south of Avenue 21 1/2 Overcrossing.

Component			Implementing Ag	ency	/
PA&ED	Caltrans District 6		0.1		
PS&E	Caltrans District 6				
Right of Way	Caltrans District 6		7		
Construction	Caltrans District 6				
Legislative Districts				<	
Assembly:	8,27	Senate:	14	Congressional:	13
Project Milestone				Existing	Proposed
Project Study Report App	roved			06/14/2019	
Begin Environmental (PA	&ED) Phase				10/01/2024
Circulate Draft Environme	ental Document		05/01/2026		
Draft Project Report	07				08/01/2026
End Environmental Phase	e (PA&ED Milestone)			7	12/01/2026
Begin Design (PS&E) Pha	ase		12/15/2026		
End Design Phase (Read	y to List for Advertise	ment Milestone)			08/07/2029
Begin Right of Way Phase	е		ΔY	7	07/15/2027
End Right of Way Phase	(Right of Way Certific	ation Milestone)			08/01/2029
Begin Construction Phase	e (Contract Award Mile	estone)			02/02/2030
End Construction Phase ((Construction Contrac	t Acceptance Mile	estone)		02/17/2032
Begin Closeout Phase					12/17/2032
End Closeout Phase (Clo	seout Report)				12/17/2033

PROJECT PROGRAMMING REQUEST (PPR)

PRG-0010 (REV 08/2020)

PPR ID ePPR-D06-2024-0001 v0

Date 07/14/2023 16:12:09

Purpose and Need

Improvements to this section of SR 99 will add one lane in each direction of travel. This improvement is needed to enhance freight mobility, preserve acceptable facility operation, improve safety, and reduce congestion. The proposed 6-lane freeway would also improve the flow and travel-time reliability along this segment of SR 99 for current volumes of traffic and provide enough capacity to manage the projected passenger and freight vehicle volumes. SR 99 serves as a major freight corridor through the Central Valley and improvements are needed to ensure reliable delivery of time sensitive agricultural goods. The North Madera 99 6-lane project is one of the last portions of 6-lane needed to facilitate the SR 99 Corridor Plan, which is a comprehensive plan addressing managed lanes through the central valley. The 6-lane segment immediately south of this project was completed in August 2022. The North Madera 99 6-lane project will transition and tie into the existing 6 lane segment constructed in 2006.

NHS Improvements ☐ YES ☐ NO		Roadway Class 1		Reversible Lar	ne Analysis 🔀 YES 🗌 NO
Inc. Sustainable Communities Strategy Goals YES NO Reduce Greenhouse Gas Emissions YES NO					
Project Outputs					
Category		Out	puts	Unit	Total
Pavement (lane-miles)	Roadw	ay lane miles		Miles	28.8
Pavement (lane-miles)	Ramps	and Connectors const	ructed	Miles	2

STATE OF CALIFORNIA • DEPARTMENT OF TRANSPORTATION PROJECT PROGRAMMING REQUEST (PPR)

ORAFI

PRG-0010 (REV 08/2020)

PPR ID ePPR-D06-2024-0001 v0

Date 07/14/2023 16:12:09

Additional Information

ORAFI

PROJECT PROGRAMMING REQUEST (PPR)

PRG-0010 (REV 08/2020)

DRAFT

PPR ID ePPR-D06-2024-0001 v0

ORAFI

Measure Required For Indicator/Measure	Unit	Build	Future No Build	Change
				^

ORAFI

DRAFT

PROJECT PROGRAMMING REQUEST (PPR)

PRG-0010 (REV 08/2020)

PPR ID ePPR-D06-2024-0001 v0

District	County	Route	EA	Project ID	PPNO
06	Madera County	99	0Y360	0619000052	7004
Project Title					

North Madera 99 6-lane

Component E&P (PA&ED) PS&E R/W SUP (CT) CON SUP (CT) R/W CON	Prior	24-25	ing Total F 25-26	Project Cos 26-27	27-28	28-29	29-30+	Total	Implementing Agency Caltrans District 6
E&P (PA&ED) PS&E R/W SUP (CT) CON SUP (CT) R/W CON	Prior	24-25	25-26	26-27	27-28	28-29	29-30+	Total	
PS&E R/W SUP (CT) CON SUP (CT) R/W CON			O _E						Caltrane Dietrict 6
R/W SUP (CT) CON SUP (CT) R/W CON			O _k						Califalis District 0
CON SUP (CT) R/W CON									Caltrans District 6
R/W CON									Caltrans District 6
CON									Caltrans District 6
									Caltrans District 6
TOTAL									Caltrans District 6
		Propo	sed Total	Project Cos	st (\$1,000s)				Notes
E&P (PA&ED)	<i>p</i>	4,300						4,300	
PS&E					8,400			8,400	
R/W SUP (CT)					3,000			3,000	
CON SUP (CT)							6,600	6,600	
R/W					16,800			16,800	
CON						/	187,000	187,000	
TOTAL		4,300			28,200		193,600	226,100	
Fund #1:	IIP - Nation	nal Hwy Sys	tem (Linco	ommitted)	-				Program Code
1 4114 # 1.	III IVatioi			unding (\$1,	000s)				r regram code
Component	Prior	24-25	25-26	26-27	27-28	28-29	29-30+	Total	Funding Agency
E&P (PA&ED)					7				3 3 7
PS&E									
R/W									
R/W CON									
CON									
			roposed F	Fundina (\$1	.000s)				Notes
CON TOTAL			'roposed F	Funding (\$1	,000s)			4.300	Notes
CON		4,300	Proposed F	Funding (\$1	,000s)			4,300	Notes
CON TOTAL E&P (PA&ED) PS&E			Proposed F	Funding (\$1	,000s)		A	4,300	Notes
CON TOTAL E&P (PA&ED) PS&E R/W SUP (CT)	Š		Proposed F	Funding (\$1	,000s)			4,300	Notes
CON TOTAL E&P (PA&ED) PS&E			Proposed F	Funding (\$1	,000s)		, S	4,300	Notes
CON TOTAL E&P (PA&ED) PS&E R/W SUP (CT) CON SUP (CT)			Proposed F	Funding (\$1	,000s)			4,300	Notes
R/W SUP (CT)									

PROJECT PROGRAMMING REQUEST (PPR)

PRG-0010 (REV 08/2020)

PPR ID ePPR-D06-2024-0001 v0

Fund #2:	Future Ne	ed - Future	Funds (Un	committed)					Program Code
			Existing F	unding (\$1,	000s)				
Component	Prior	24-25	25-26	26-27	27-28	28-29	29-30+	Total	Funding Agency
E&P (PA&ED)									
PS&E									
R/W SUP (CT)									
CON SUP (CT)									
R/W									
CON				3					
TOTAL									
		•	Proposed F	unding (\$1	,000s)				Notes
E&P (PA&ED)									
PS&E					8,400			8,400	
R/W SUP (CT)					3,000			3,000	
CON SUP (CT)							6,600	6,600	
R/W					16,800			16,800	
CON							187,000	187,000	
TOTAL					28,200		193,600	221,800	

DRAFT

PLANNING, PROGRAMMING, AND MONITORING Project Programming Request

STATE OF CALIFORNIA • DEPARTMENT OF TRANSPORTATION PROJECT PROGRAMMING REQUEST (PPR)

PRG-0010 (REV 08/2020)

PPR ID ePPR-6138-2024-0003 v0

Amendment (Existing	Project) YES	S ⊠ NO			Date 01/12/2024 06:11:2	
Programs 🔲 LF	PP-CLPP	-F SCCP	☐ TCEP ☐ STIF	Other O		
District	EA	Project ID	PPNO	Nomina	iting Agency	
06		0623000208	6L05	Madera County Transportation Commission		
County	Route	PM Back	PM Ahead	Co-Nominating Agency		
Madera County						
				MPO	Element	
				MCTC	Local Assistance	
Pro	ject Manager/Con	tact	Phone	Emai	I Address	
Patricia Taylor			559-675-0721	patricia@maderactc.org		
Project Title						
Planning, Programmin	ng and Monitorina					
0. 0						
l t' (Daria at lia 4	b) Di-ti (0					
ocation (Project Limit	ts), Description (Se	cope of vvork)				

&ED				
&E				
ht of Way				
nstruction Madera County Transportation Commission				
pislative Districts				
sembly: 8,27 Senate:	8,27 Senate: 14			
ject Milestone	Existing	Proposed		
ject Study Report Approved			T- King	
gin Environmental (PA&ED) Phase				
culate Draft Environmental Document Document Type				
ft Project Report				
Environmental Phase (PA&ED Milestone)				
gin Design (PS&E) Phase				
Design Phase (Ready to List for Advertisement Milestone)				
in Right of Way Phase				
Right of Way Phase (Right of Way Certification Milestone)				
in Construction Phase (Contract Award Milestone)		07/01/2020	07/01/2024	
Construction Phase (Construction Contract Acceptance Milestone)		06/30/2025	06/30/2029	
in Closeout Phase		07/01/2025	07/01/2029	
Closeout Phase (Closeout Report)		12/31/2025	12/31/2029	

STATE OF CALIFORNIA • DEPARTMENT OF TRANSPORTATION PROJECT PROGRAMMING REQUEST (PPR)

PRG-0010 (REV 08/2020)

PPR ID ePPR-6138-2024-0003 v0

Date 01/12/2024 06:11:20 Purpose and Need The Planning, Programming and Monitoring program ensures that MCTC continues to fulfill its Federally mandated functions as the MPO for the Madera region, including: (1) Oversight and monitoring of projects receiving Federal-aid and those identified in the State Transportation Improvement Program (STIP), (2) Ensuring that all projects and recipients of Federal/State funding are in compliance with all State and Federal regulations; and (3) Ensuring that all projects are consistent with MCTC's adopted planning documents. NHS Improvements | YES | NO YES NO Roadway Class NA Reversible Lane Analysis Inc. Sustainable Communities Strategy Goals ☐ YES ⋈ NO Reduce Greenhouse Gas Emissions TYES NO **Project Outputs** Outputs Unit Total Category

STATE OF CALIFORNIA • DEPARTMENT OF TRANSPORTATION PROJECT PROGRAMMING REQUEST (PPR)

PRG-0010 (REV 08/2020)

PPR ID ePPR-6138-2024-0003 v0

Date 01/12/2024 06:11:20

Additional Information

STATE OF CALIFORNIA • DEPARTMENT OF TRANSPORTATION

PROJECT PROGRAMMING REQUEST (PPR)

PRG-0010 (REV 08/2020)

PPR ID ePPR-6138-2024-0003 v0

Performance Indicators and Measures									
Measure	Required For	Indicator/Measure	Unit	Build	Future No Build	Change			
	Value All March			1. /	DESCRIPTION OF THE PARTY OF THE				

STATE OF CALIFORNIA • DEPARTMENT OF TRANSPORTATION

PROJECT PROGRAMMING REQUEST (PPR)

PRG-0010 (REV 08/2020)

R/W SUP (CT)

2,457

2,457

107

107

107

107

107

107

107

107

97

97

2,982

2,982

R/W CON

TOTAL

PPR ID ePPR-6138-2024-0003 v0

District	County	Route	EA	Project ID	PPNC
06	Madera County			0623000208	6L05

Planning, Programming and Monitoring

		Exist	ting Total P	roject Cost	(\$1,000s)				
Component	Prior	24-25	25-26	26-27	27-28	28-29	29-30+	Total	Implementing Agency
E&P (PA&ED)				E 2 5		EAST INTE			
PS&E		15-44			15 V 184		175	2 1 THE	
R/W SUP (CT)				Barris Stall		PALLED.			
CON SUP (CT)									Madera County Transportation Com
R/W	30 C 4	78 7						A HILLS	
CON	2,506	73	72	72	1500 350			2,723	Madera County Transportation Comm
TOTAL	2,506	73	72	72			Marini	2,723	
	-	Propo	sed Total F	Project Cos	t (\$1,000s)				Notes
E&P (PA&ED)		F - 18	4 11 5	THE SECTION					
PS&E				1961 - 19		T-OL		273 5V	
R/W SUP (CT)	1193	THE WALL					The state		
CON SUP (CT)								THE SALE	
R/W	13 T 17						Example 31		
CON	2,501	107	107	107	107	97	All Out	3,026	
TOTAL	2,501	107	107	107	107	97		3,026	
Fund #1:	RIP - Natio	nal Hwy Sy	stem (Com	mitted)					Program Code
				nding (\$1,0	00s)				20.30.600.670
Component	Prior	24-25	25-26	26-27	27-28	28-29	29-30+	Total	Funding Agency
E&P (PA&ED)		6-1-	TRI UR						Madera County Transportation Comm
PS&E							April 1		\$37 CON voted 07/16/98
R/W SUP (CT)	To Death I					11111			\$56 CON voted 08/24/99
CON SUP (CT)								N 5 3 1	\$56 CON voted 07/01/00 \$85 CON voted 06/27/01
R/W		N 1	R. 6.7			A. (1)	F - 100		\$150 CON voted 06/27/01
CON	2,462	73	72	72	7,377	Styles II		2,679	\$100 CON voted 02/26/04
TOTAL	2,462	73	72	72				2,679	\$27 CON voted 08/18/05 \$27 CON voted 07/20/06
	-	P	roposed Fi	unding (\$1,	000s)				Notes
E&P (PA&ED)									
PS&E								1000	

STATE OF CALIFORNIA • DEPARTMENT OF TRANSPORTATION

PROJECT PROGRAMMING REQUEST (PPR)

PRG-0010 (REV 08/2020)

PPR ID ePPR-6138-2024-0003 v0

Fund #2:	RIP - COVI		Program Code						
			Existing F	unding (\$1,	000s)				20.30.010.817
Component	Prior	24-25	25-26	26-27	27-28	28-29	29-30+	Total	Funding Agency
E&P (PA&ED)				10.115					Madera County Transportation Comm
PS&E					17075		DE LE		\$44 CON voted 06/29/22
R/W SUP (CT)			A Principal						
CON SUP (CT)		2-1-21		A ST	2001		Mary 1	HARRIE	
R/W									
CON	44				The soul	11215		44	
TOTAL	44		RUIS			The same		44	
			Proposed F	unding (\$1	,000s)		-		Notes
E&P (PA&ED)									
PS&E									
R/W SUP (CT)									
CON SUP (CT)								To the second	
R/W									
CON	44							44	
TOTAL	44						-	44	

STATE OF CALIFORNIA • DEPARTMENT OF TRANSPORTATION PROJECT PROGRAMMING REQUEST (PPR)

PRG-0010 (REV 08/2020)

PPR ID ePPR-6138-2024-0003 v0

	Complete this	s page for amendments o	only	Date 01/12/202	4 06:11:20
District	County	Route	EA	Project ID	PPNC
06	Madera County			0623000208	6L05
SECTION 1 - All Projects				•	
Project Background					
No Amendment - 2024 STIP F	PM				
Programming Change Reque	sted		ROTE IS 1975		
No Amendment - 2024 STIP F					
Reason for Proposed Change			21 TO 1 TO 1		
No Amendment - 2024 STIP P	PM				
If proposed change will delay	ana ar mara compananto al	party avaloin 1) rassan for	the delay 2) seet incr	ages related to the delay	and 2) hou
If proposed change will delay cost increase will be funded	one or more components, ca	early explain 1) reason for	the delay, 2) cost incre	ease related to the delay	r, and 3) nov
Other Significant Information					
SECTION 2 - For SB1 Project	Only				
Project Amendment Request (SB1 program guidelines for	r specific criteria)		
lo Amendment - 2024 STIP P		P3 3			
Approvals	A HOLD THE STATE OF THE		The state of the s		(3) 27 (3)
hereby certify that the above	information is complete and	accurate and all approvals	have been obtained f	or the processing of this	amendmer
equest.	morniagon is complete and	accurate and an approvais	nave been obtained t	or the processing of this	amendine
Name (Print or Type	e)	Signature	Titl	e	
					Date
					Date
SECTION 3 - All Projects					Date

Attachments

- 1) Concurrence from Implementing Agency and/or Regional Transportation Planning Agency 2) Project Location Map

APPENDICES SECTION 18

BOARD RESOLUTION OR BOARD DOCUMENTATION OF APPROVAL OF THE 2024 RTIP

BEFORE

THE COMMISSIONERS OF THE MADERA COUNTY TRANSPORTATION COMMISSION COUNTY OF MADERA, STATE OF CALIFORNIA

In the matter of THE 2024 MADERA COUNTY REGIONAL TRANSPORTATION IMPROVEMENT PROGRAM

Resolution No.: 23-12

WHEREAS, the Madera County Transportation Commission (MCTC) is the Regional Transportation Planning Agency for Madera County pursuant to state law; and

WHEREAS, pursuant to State law, every two years the MCTC is required to develop and submit to the California Transportation Commission (CTC) a Regional Transportation Improvement Plan (RTIP) that identifies projects to be included in the State Transportation Improvement Program (STIP); and

WHEREAS, the MCTC prepared the 2024 RTIP in compliance with the CTC adopted 2024 Guidelines and STIP Fund estimate; and

WHEREAS, the projects contained in the 2024 RTIP are consistent with the MCTC's adopted 2022 Regional Transportation Plan (RTP), 2023 Federal Transportation Improvement Program (FTIP); and

WHEREAS, the proposed 2024 Regional Transportation Improvement Program (or Interregional Transportation Improvement Program) is consistent with MCTC's current approved Regional Transportation Plan and Sustainable Communities Strategies, if applicable; and

WHEREAS, pursuant to adopted CTC, STIP Guidelines, the MCTC is authorized to develop and submit the Regional Transportation Improvement Program by December 15, 2023; and

WHEREAS, the 2024 Madera County Regional Transportation Improvement Program has been prepared by the Madera County Transportation Commission in cooperation with its member agencies and Caltrans in accordance with CTC programming policies and guidelines; and

WHEREAS, the Madera County Transportation Commission Policy Board considered the 2024 RTIP at its November 29, 2023 meeting.

NOW, THEREFORE, BE IT RESOLVED, the Madera County Transportation Commission does hereby adopt the 2024 Madera County Regional Transportation Improvement Program

and directs staff to submit the program to the Department of Transportation and CTC by December 15, 2023.

BE IT FURTHER RESOLVED, that the Madera County Transportation Commission Policy Board authorizes the MCTC Executive Director to negotiate with the CTC and Caltrans and to submit any additional amendments or revisions to the 2024 RTIP.

The foregoing resolution was adopted this 29th day of November 2023 by the following vote:

Commissioner Waseem Ahmed	YES
Commissioner Leticia Gonzalez	ABSENT
Commissioner Robert Poythress	YES
Commissioner Jose Rodriguez	YES
Commissioner Cecelia Gallegos	YES
Commissioner David Rogers	YES

Chair, Madera County Transportation Commission

Executive Director, Madera County Transportation Commission

APPENDICES
SECTION 19
FACT SHEET

2024 State Transportation Improvement Program (STIP) Madera County Transportation Commission Fact Sheet

Executive Summary

The 2024 Regional Transportation Improvement Program (RTIP) for Madera County is prepared by the Madera County Transportation Commission (MCTC) and proposes how regional discretionary transportation dollars should be programmed. The RTIP is updated every two years and submitted to the CTC. This RTIP covers the period from July 1, 2024, through June 30, 2029 (State Fiscal Years 2024/25 - 2028/29). The existing projects programmed in the RTIP are intended toward advancing the region and State by eliminating gap closure/pinch point segments of SR 99 and increasing ridership on commuter rail. The new North Madera 6 Lane and existing South Madera 6 Lane projects are located near the geographic center of both California and the San Joaquin Valley, the breadbasket of the nation and the source of much of the nation's agricultural export income. The projects represent a major lynchpin for goods movement and passenger travel along SR 99 to and through the City of Madera. Expansion of these sections of SR 99 within and adjacent to the City of Madera is needed to improve safety, reduce congestion, increase connectivity for goods movement and general traffic on the national highway system, and to preserve acceptable facility operation. The Madera High-Speed Rail Station project is located on Avenue 12, Madera County's busiest east/west corridor connecting SR 99 and SR 41. The project will provide service connection with the San Joaquins Amtrak and transfer to High Speed Rail service when the initial operating segments between Merced and Bakersfield commence in 2030.

Benefits

The new North Madera 6 Lane, existing South Madera 6 Lane, and the Madera High-Speed Rail Station Project will assist the region's ability to improve safety, reduce congestion and increase connectivity of the highway system, increase multi-modal connectivity, enhance interregional commuter rail and preserve acceptable facility operation of SR 99. The projects in the RTIP benefits the surrounding disadvantaged communities by increasing connectivity to employment and production centers, education, services, and other opportunities in the region.

Goals and Objectives

The 2024 RTIP furthers the goals and objectives of MCTC's adopted 2022 Regional Transportation Plan and Sustainable Communities Strategy (RTP/SCS). The 2022 RTP/SCS contains four primary goals supported by seven objects which offer varying methods and tactics to ultimately achieve progress towards the goals. The goals and objectives share several common themes based on positive outreach feedback and state and federal mandates: creating a safer transportation system, raising economic vitality, maintenance and rehabilitation of existing infrastructure, finding ways to reduce vehicle miles traveled and the harmful emission they generate, and providing better access to more modal options.

The following four goals guide the RTP/SCS as it ventures to achieve its vision and improve the overall quality of life in Madera County through an integrated multimodal transportation system and supportive land use footprint:

- Improve Quality of Life MCTC's plans, programs, and policies will work to improve the
 quality of life in the Madera County region by integrating transportation systems that
 promote access to affordable housing, education resources, jobs, and recreational
 facilities.
- Raise Economic Prosperity MCTC's plans, programs, and policies will facilitate enhanced economic viability of the region by increasing access to education and new job opportunities. A more educated population combined with a low cost of living can attract new investment in the Madera region.
- Cultural Diversity MCTC's plans, programs, and policies will respect the region's wide variety of cultures and subcultures (each having unique needs and perspectives) by facilitating a range of transportation modes and housing choices designed to benefit the County's diverse population.
- Promote Public Health and a Cleaner Environment MCTC's plans, programs, and policies will give preference to new development and economic prosperity in ways that ensure the health of its citizens, maintain and enhance the surrounding environment (cultural and socioeconomic resources), and those ways that enhance the regions financial stability over time.

The objectives identified below are a combined set of goals, policies, actions, and performance measures that are reflective of necessary steps to guide improvements to Madera County's transportation system, development and economic growth, and wellbeing through the next 24 years:

- Objective 1 Provide equitable access to transportation options for all, regardless of race, income, national origin, age, location, physical ability, or any other factor.
- Objective 2 Develop a transportation network able to support the safe and efficient movement of people and goods and increase economic vitality.
- Objective 3 Improve environmental conditions through integrated planning of transportation and land uses and achieve state and federal air quality improvement mandates.
- Objective 4 Support the development and implementation of innovative and emerging transportation technologies.
- Objective 5 Improve mobility for all travelers through a variety of accessible modal options.
- Objective 6 Foster growth with a mix of land use types able to facilitate mixed uses, infill and compact development, and preserve agricultural land and natural resources.
- Objective 7 Develop funding and financing strategies to implement the projects and strategies in the RTP/SCS.

MCTC's 2024 RTIP will assist the Madera region's ability to achieve its goals and objectives. The projects contained in this RTIP are consistent with and help implement the region's transportation projects contained in MCTC's 2022 RTP/SCS. Furthermore, the programming of MCTC's 2024 RTIP is consistent with the policies, procedures, and funding capacity established in the 2022 STIP Guidelines and STIP Fund Estimate. The North Madera 6 Lane, South Madera 6 Lane, and the Madera High-Speed Rail Station Project will assist the region's ability to improve safety,

reduce congestion and increase connectivity of the highway system, increase multi-modal connectivity, enhance interregional commuter rail and preserve acceptable facility operation of SR 99.

The MCTC 2024 RTIP aligns with State, regional and local goals. The RTIP supports the goals by balancing local community and interregional needs and improving safety for all users. The RTIP is also consistent with the California Freight Mobility Plan, SR 99 Business Plan, SR 99 Corridor System Management Plan and the MCTC RTP.

APPENDICES SECTION 20

DOCUMENTATION OF COORDNATION WITH CALTRANS DISTRICT

Not Applicable for the 2024 RTIP

APPENDICES SECTION 21 DETAILED PROJECT PROGRAMMING SUMMARY TABLE

	Madera 2024 RTIP												
				Project Totals by Fiscal Year (\$1,000)									
County	Agency	Project	Total	Total 24/25 25/26 26/27 27/28 28/29							PA&ED	PS&E	Const
Madera	мстс	Planning, Programming and Monitoring	\$525	\$525 \$107 \$107 \$107 \$107 \$97							\$525		

Total \$525

APPENDICES SECTION 22 ALTERNATIVE DELIVERY METHODS

Not Applicable for the 2024 RTIP

APPENDICES SECTION 23 CALTRANS B/C CALCULATIONS

NORTH MADERA 6 LANE STATE ROUTE 99 – AVENUE 17 TO 21 Caltrans B/C Calculations

Project Information

PROJECT: North Madera 99 Widenning

EA: PPNO: 06-0Y360

1A PROJECT	T DATA
Type of Project	
Select project type from list	General Highway
Project Location (enter 1 for So. Cal., 2 for No. C	al., or 3 for rural)
Length of Construction Period	3 years
One- or Two-Way Data	enter 1 or 2
	Current
Length of Peak Period(s) (up to 24 hrs)	5 hours

1B HIGHWAY DESIGN AND TRAF	FIC DAT	A
Highway Design	No Build	Build
Roadway Type (Fwy, Exp, Conv Hwy)	F	F
Number of General Traffic Lanes	4	6
Number of HOV/HOT Lanes	0	0
HOV Restriction (2 or 3)	0	
Exclusive ROW for Buses (y/n)	N	
Highway Free-Flow Speed	68	70
Ramp Design Speed (if aux. lane/off-ramp proj.)	35	35
Length (in miles) Highway Segment	4.8	4.8
Impacted Length	5.0	4.8
Average Daily Traffic		
Current	71,594	
	No Build	Build
Base (Year 1)	77,372	77,372
Forecast (Year 20)	113,965	113,965
Average Hourly HOV/HOT Lane Traffic		0
Percent of Induced Trips in HOV (if HOT or 2-to-3	conv.)	100%
Percent Traffic in Weave		0.0%
Percent Trucks (include RVs, if applicable)	9%	9%
Truck Speed		
Ta =		
On-Ramp Volume	Peak	Non-Peak
Hourly Ramp Volume (if aux. lane/on-ramp proj.)	0	0
Metering Strategy (1, 2, 3, or D, if on-ramp proj.)		
Output Formation (f		
Queue Formation (if queuing or grade crossing project)	Year 1	Year 20
Arrival Rate (in vehicles per hour)	0	0
Departure Rate (in vehicles per hour)	U	0
Pavement Condition (if pavement project)	No Build	Build
IRI (inches/mile) Base (Year 1)		
Forecast (Year 20)		
, , ,		
Average Vehicle Occupancy (AVO)	No Build	Build
General Traffic Non-Peak	1.30	1.30
Peak	1.15	1.15
High Occupancy Vehicle (if HOV/HOT lanes)	2.15	2.15

1C HIGHWAY CRASH DATA									
Actual 3-Year Crash Data (from Table B)									
Count (No.) Rate									
Total Crashes (Tot)	209	0.56							
Fatal Crashes (Fat)	3	0.008							
Injury Crashes (Inj)	46	0.12							
Property Damage Only (PDO) Crashes	160	0.43							
Statewide Basic Average Crash Rate									
	No Build	Build							
Rate Group	H 63	H 64							
Crash Rate (per million vehicle-miles)	1.08	1.24							
Percent Fatal Crashes (Pct Fat)	0.7%	0.5%							
Percent Injury Crashes (Pct Inj)	33.4%	32.5%							
	•								

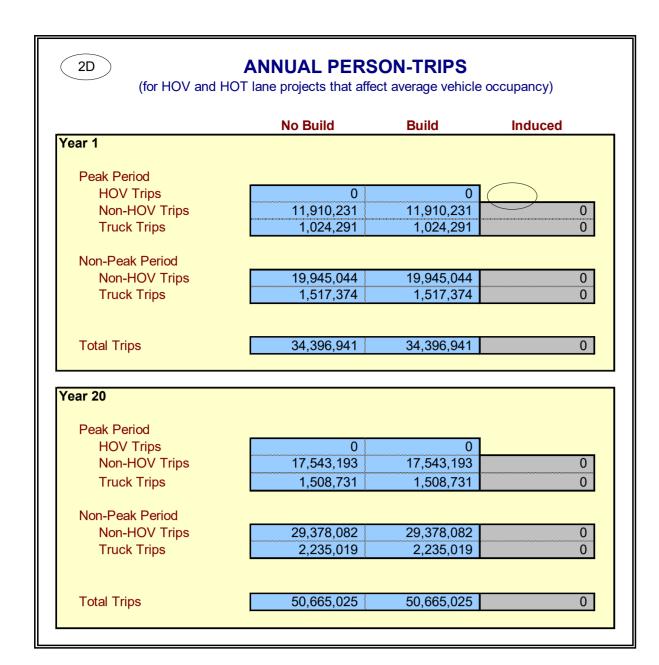
ps		No Build	Build
Base (Year 1)			
Forecast (Year 2	20)		
ng Peak Period		40%	
from Parallel H	lighway		100%
loo		No Puild	Build
		INO Bulla	Dullu
	20)		
in tall project	,		
, , ,	t)	No Duild	Build
	nutoo)	No Bulia	0.0
			0.0
		0.0	0.0
		0.0	0.0
	,		
ossing	Current	Year 1	Year 2
f Trains		0	
i i aliio			
Time (in min.)		0.0	
Time (in min.)			
	et)	0.0 No Build	Build \$0
	ng Peak Period from Parallel F les Base (Year 1) Forecast (Year 2 Train (if rail projec sit Accidents n (if safety projec ravel Time Non-Peak (in minutes Non-Peak (in minutes	Base (Year 1) Forecast (Year 20) Train (if rail project) sit Accidents In (if safety project) Favel Time Non-Peak (in minutes) Peak (in minutes) Peak (in minutes) Peak (in minutes)	reg Peak Period 40% from Parallel Highway les No Build Base (Year 1) Forecast (Year 20) Train (if rail project) sit Accidents In (if safety project) ravel Time Non-Peak (in minutes) Peak (in minutes) Non-Peak (in minutes) Peak (in minutes) 0.0 Peak (in minutes) 0.0

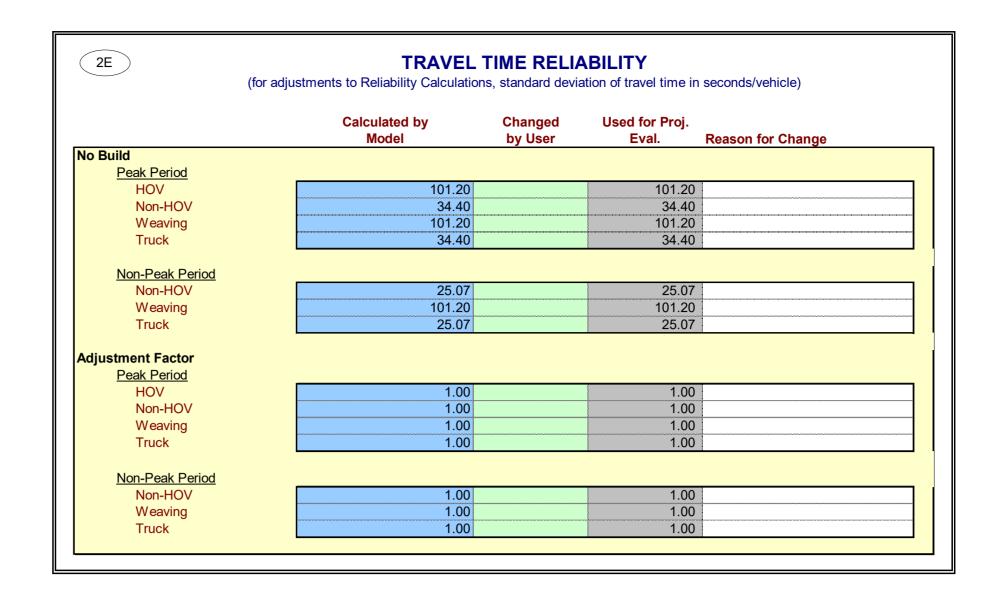
Model should be run for both roads for intersection or bypass highway projects, and may be run twice for connectors. Press button below to prepare model to enter data for second road. After data are entered, results reflect total project benefits.

Prepare Model for Second Road

1E			PROJECT (COSTS (ent	er costs in	thousands	of dollars)			
Col. no.	(1)	(2)	(3)	(4)	(5)	(6)	(7)			
		DIRECT PROJECT COSTS INITIAL COSTS SUBSEQUENT COSTS					Transit Agency	TOTAL COSTS (in dollars)		
Year	Project Support	R/W	Construction	Maint./ Op.	Rehab.	Mitigation	Cost Savings	Constant Dollars	Present Value	
Construction	on Period									
1	\$16,143	\$12,000	\$50,000					\$78,143,333	\$78,143,333	
2	1,833		50,000					51,833,333	49,839,744	
3	1,833		50,000					51,833,333	47,922,830	
4								0	0	
5								0	0	
6								0	0	
7								0	0	
8								0	0	
Project Op	en									
1				\$10				\$10,000	\$8,890	
2			-	10				10,000	8,548	
3				10				10,000	8,219	
4			-	10				10,000	7,903	
5 6			-	10 10				10,000	7,599	
7			-	10				10,000 10,000	7,307 7,026	
8			-	10				10,000	6,756	
9			•	10				10,000	6,496	
10			-	10				10,000	6,246	
11			-	10				10,000	6,006	
12			-	10				10,000	5,775	
13				10				10,000	5,553	
14			•	10				10,000	5,339	
15			•	10				10,000	5,134	
16			j	10				10,000	4,936	
17				10				10,000	4,746	
18				10				10,000	4,564	
19				10				10,000	4,388	
20			•	10				10,000	4,220	
Total	\$19,810	\$12,000	\$150,000	\$200	\$0	\$0	\$0	\$182,010,000	\$176,031,558	

Present Value = <u>Future Value (in Constant Dollars)</u> (1 + Real Discount Rate) ^ Year


Model Inputs


	HIGHWA	AY SPEED AND VOLUM	E INPUTS
	Calculated by	Changed Used for Proj.	Decree for Observe
ld	Model	by User Eval.	Reason for Change
r1			
Peak Period HOV Volume	0		
Non-HOV Volume	28,375	28,375	
Weaving Volume	0	(
Truck Volume	2,806	2,806	
HOV Speed	55.0	55.0	
Non-HOV Speed Weaving Speed	66.9 55.0	66.9 55.0	
Truck Speed	66.9	66.9	
Non-Peak Period			
Non-HOV Volume	42,034	42,034	
Weaving Volume	0	(
Truck Volume	4,157 68.0	4,157	
Non-HOV Speed Weaving Speed	55.0	68.0 55.0	
Truck Speed	68.0	68.0	
r 20			
Peak Period HOV Volume	0		
Non-HOV Volume	41,794	41,794	
Weaving Volume	0		
Truck Volume	4,134	4,134	
HOV Speed	55.0	55.0	
Non-HOV Speed	37.9 55.0	37.9	
Weaving Speed Truck Speed	37.9	55.0 37.9	
	2.72		
on-Peak Period			
Non-HOV Volume	61,914	61,914	
Weaving Volume Truck Volume	6,123	6,123	
Non-HOV Speed	68.0	68.0	
Weaving Speed	55.0	55.0	
Truck Speed	68.0	68.0	
1 eak Period			
HOV Volume	0	(
Non-HOV Volume	28,375	28,375	
Weaving Volume Truck Volume	2,806	2,806	
HOV Speed	55.0	55.0	
Non-HOV Speed	70.0	70.0	
Weaving Speed	55.0		
Tours In Co. 1		55.0	
Truck Speed	70.0	55.0 70.0	
on-Peak Period	70.0	70.0	
on-Peak Period Non-HOV Volume	70.0 42,034	70.0 42,03 ⁴	
on-Peak Period	70.0	70.0	
on-Peak Period Non-HOV Volume Weaving Volume Truck Volume Non-HOV Speed	70.0 42,034 0 4,157 70.0	70.0 42,034 0 4,157 70.0	
Ion-Peak Period Non-HOV Volume Weaving Volume Truck Volume Non-HOV Speed Weaving Speed	70.0 42,034 0 4,157 70.0 55.0	70.6 42,034 (4,157 70.0 55.6	
lon-Peak Period Non-HOV Volume Weaving Volume Truck Volume Non-HOV Speed Weaving Speed Truck Speed	70.0 42,034 0 4,157 70.0	70.0 42,034 0 4,157 70.0	
Non-How Volume Weaving Volume Truck Volume Non-HOV Speed Weaving Speed	70.0 42,034 0 4,157 70.0 55.0	70.6 42,034 (4,157 70.0 55.6	
on-Peak Period Non-HOV Volume Weaving Volume Truck Volume Non-HOV Speed Weaving Speed Truck Speed Truck Speed 20 eak Period HOV Volume	70.0 42,034 0 4,157 70.0 55.0 70.0	70.0 42,03 ² (4,157 70.0 55.0 70.0	
on-Peak Period Non-HOV Volume Weaving Volume Truck Volume Non-HOV Speed Weaving Speed Truck Speed 20 eak Period HOV Volume Non-HOV Volume	70.0 42,034 0 4,157 70.0 55.0 70.0	70.0 42,034 (4,157 70.0 55.0 70.0	
on-Peak Period Non-HOV Volume Weaving Volume Truck Volume Non-HOV Speed Weaving Speed Truck Speed 20 eak Period HOV Volume Non-HOV Volume Weaving Volume	70.0 42,034 0 4,157 70.0 55.0 70.0 41,794	70.6 42,034 (4,157 70.0 55.0 70.0 (41,794	
on-Peak Period Non-HOV Volume Weaving Volume Truck Volume Non-HOV Speed Weaving Speed Truck Speed Truck Speed HOV Volume Non-HOV Volume Weaving Volume Truck Volume Truck Volume	70.0 42,034 0 4,157 70.0 55.0 70.0 41,794 0 41,794 4,134	70.6 42,034 (4,157 70.6 55.6 70.6 (41,794 (41,794 (4,134	
on-Peak Period Non-HoV Volume Weaving Volume Truck Volume Non-HOV Speed Weaving Speed Truck Speed Truck Speed A Volume HOV Volume Weaving Volume Weaving Volume Truck Volume HOV Speed	70.0 42,034 0 4,157 70.0 55.0 70.0 0 41,794 0 4,134 55.0	70.0 42,034 (41,034 (4,157 (70.0 55.0 70.0 (41,794 (41,794 (41,134 (55.0 55.0	
on-Peak Period Non-HOV Volume Weaving Volume Truck Volume Non-HOV Speed Weaving Speed Truck Speed 20 eak Period HOV Volume Non-HOV Volume Weaving Volume Truck Volume HOV Speed Won-HOV Speed Weaving Speed Weaving Speed	70.0 42,034 0 4,157 70.0 55.0 70.0 0 41,794 0 4,134 55.0 69.0 55.0	70.6 42,034 (4,157 70.0 55.0 70.0 (4,1794 (4,134) 55.0 69.0	
on-Peak Period Non-HOV Volume Weaving Volume Truck Volume Non-HOV Speed Weaving Speed Truck Speed Truck Speed 20 eak Period HOV Volume Non-HOV Volume Weaving Volume Truck Volume HOV Speed Non-HOV Speed	70.0 42,034 0 4,157 70.0 55.0 70.0 41,794 0 41,794 0 4,134 55.0 69.0	70.6 42,03 ² (1) (2) (3) (4),157 (70.0) (5) (5) (70.0) (4) (4) (4) (4) (5) (5) (6) (6) (6)	
on-Peak Period Non-HOV Volume Weaving Volume Truck Volume Non-HOV Speed Weaving Speed Truck Speed 20 eak Period HOV Volume Weaving Volume Weaving Volume Truck Volume HOV Speed Weaving Speed Truck Volume HOV Speed Weaving Speed Truck Speed Truck Speed	70.0 42,034 0 4,157 70.0 55.0 70.0 41,794 0 4,134 55.0 69.0 69.0	70.6 42,034 (1) 4,157 70.0 55.6 70.0 (2) 41,794 (3) 41,134 55.6 69.0 69.0	
on-Peak Period Non-HOV Volume Weaving Volume Truck Volume Non-HOV Speed Weaving Speed Truck Speed 20 eak Period HOV Volume Non-HOV Volume Weaving Volume Truck Volume HOV Speed Weaving Speed Truck Speed Truck Speed Mon-HOV Speed Weaving Speed Truck Speed On-Peak Period Non-HOV Volume	70.0 42,034 0 4,157 70.0 55.0 70.0 41,794 0 41,794 55.0 69.0 69.0 69.0	70.6 42,034 (4,157 70.0 55.0 70.0 (41,794 41,794 4,134 55.0 69.0 61,914	
Non-Peak Period Non-HOV Volume Weaving Volume Truck Volume Non-HOV Speed Weaving Speed Truck Speed Truck Speed HOV Volume Weaving Volume Truck Volume HOV Speed Weaving Volume HOV Speed Non-HOV Speed Weaving Speed Truck Speed Truck Speed Non-HOV Volume Weaving Volume Non-HOV Volume Weaving Volume	70.0 42,034 0 4,157 70.0 55.0 70.0 41,794 0 41,794 0 4,134 55.0 69.0 55.0 69.0	70.6 42,034 (1) 41,157 70.6 55.6 70.6 (4) 41,794 (5) 69.6 69.6 61,914	
Ion-Peak Period Non-HOV Volume Weaving Volume Truck Volume Non-HOV Speed Weaving Speed Truck Speed Truck Speed 1 20 eak Period HOV Volume Non-HOV Volume Weaving Volume Truck Volume HOV Speed Weaving Speed Truck Speed Truck Speed Weaving Speed Truck Speed Non-HOV Volume	70.0 42,034 0 4,157 70.0 55.0 70.0 41,794 0 41,794 55.0 69.0 61,914 0 6,123 70.0	70.6 42,034 (4,157 70.0 55.0 70.0 (41,794 41,794 4,134 55.0 69.0 61,914	
on-Peak Period Non-HOV Volume Weaving Volume Truck Volume Non-HOV Speed Weaving Speed Truck Speed 20 eak Period HOV Volume Weaving Volume Weaving Volume Truck Volume HOV Speed Weaving Speed Truck Speed Truck Speed Non-HOV Speed Weaving Speed Truck Speed Truck Speed Truck Speed Truck Volume Weaving Volume Truck Volume Weaving Volume Truck Volume	70.0 42,034 0 4,157 70.0 55.0 70.0 41,794 0 41,794 0 4,134 55.0 69.0 55.0 69.0 61,914 0 6,123	70.6 42,034 (1 4,157 70.0 55.6 70.0 (4) 41,794 (4) 61,914 (6) 61,914	

Model speed estimates based on Highway Capacity Manual, pavement research, and research on weaving impacts

2B	'		CRASH RATE	
	Calculated by	Changed	Used for Proj.	
	Model	by User	Eval.	Reason for Change
No Build				
Fatal Crashes	0.008		0.008	
Injury Crashes	0.12		0.12	
PDO Crashes	0.43		0.43	
Total Crashes	0.558			
Hwy Safety or Weaving Impr	rovement	0%	collision reduction	factor (per HSIP Guidelines)
Adjustment Factor (Actual/St	tatewide Avg. Existing)	0%	-	factor (per HSIP Guidelines)
Adjustment Factor (Actual/St Fatal Crashes	tatewide Avg. Existing)	0%	1.0582	factor (per HSIP Guidelines)
Adjustment Factor (Actual/St Fatal Crashes Injury Crashes	tatewide Avg. Existing) 1.0582 0.3327	0%	1.0582 0.3327	factor (per HSIP Guidelines)
Adjustment Factor (Actual/St Fatal Crashes	tatewide Avg. Existing)	0%	1.0582	factor (per HSIP Guidelines)
Adjustment Factor (Actual/St Fatal Crashes Injury Crashes PDO Crashes Build Fatal Crashes	tatewide Avg. Existing) 1.0582 0.3327 0.6042	0%	1.0582 0.3327 0.6042	factor (per HSIP Guidelines)
Adjustment Factor (Actual/St Fatal Crashes Injury Crashes PDO Crashes Build Fatal Crashes Injury Crashes	tatewide Avg. Existing) 1.0582 0.3327 0.6042 0.007 0.13	0%	1.0582 0.3327 0.6042	factor (per HSIP Guidelines)
Adjustment Factor (Actual/St Fatal Crashes Injury Crashes PDO Crashes Build Fatal Crashes	tatewide Avg. Existing) 1.0582 0.3327 0.6042	0%	1.0582 0.3327 0.6042	factor (per HSIP Guidelines)

etailed Information Available? (y/n)	N		
ggregate Segment Length (estimate as VM	r/total volume)	_	
All Ramps Arterials		miles miles	
Arterials		IIIIles	
	Entered by User	Used for Proj. Eval.	Source/Notes
o Build (Peak Period Only)	-		
Year 1 Aggregate Ramp Volume		0	
Aggregate Ramp Volume Aggregate Arterial Volume		0	
Average Ramp Speed		5.0	
Average Namp Speed Average Arterial Speed		5.0	
Average Arterial opecu		5.0	
Year 20			
Aggregate Ramp Volume		0	
Aggregate Arterial Volume		0	
Average Ramp Speed		5.0	
Average Arterial Speed		5.0	
uild (Peak Period Only) Year 1			
Aggregate Ramp Volume		0	
Aggregate Arterial Volume		0	
Average Ramp Speed		5.0	
Average Arterial Speed		5.0	
Year 20			
Aggregate Ramp Volume		0	
Aggregate Arterial Volume		0	
Average Ramp Speed		5.0	
Average Arterial Speed		5.0	

Results

PROJECT: North Madera 99 Widenning

EA: PPNO: 06-0Y360

3

INVESTMENT ANALYSIS

SUMMARY RESULTS

Life-Cycle Costs (mil. \$)	\$176.0
Life-Cycle Benefits (mil. \$)	\$270.0
Net Present Value (mil. \$)	\$94.0
Benefit / Cost Ratio:	1.5
Rate of Return on Investment:	7.7%
Payback Period:	12 years
	*

6

	Passenger	Freight	Total Over	Average
ITEMIZED BENEFITS (mil. \$)	Benefits	Benefits	20 Years	Annual
Travel Time Savings	\$105.8	\$20.2	\$126.0	\$6.3
Travel Time Reliability Benefits	\$56.8	\$15.3	\$72.1	\$3.6
Veh. Op. Cost Savings	\$26.5	\$1.4	\$27.9	\$1.4
Accident Cost Savings	\$41.4	\$4.1	\$45.5	\$2.3
Emission Cost Savings	-\$0.4	-\$1.1	-\$1.5	-\$0.1
TOTAL BENEFITS	\$230.1	\$39.9	\$270.0	\$13.5
Person-Hours of Time Saved			12,584,479	629,224
				<u>'</u>

Should benefit-cost results incl	ude:
1) Induced Travel? (y/n)	Υ
	Default = Y
2) Travel Time Reliablity? (y/n)	Υ
	Default = Y
3) Vehicle Operating Costs? (y/n)	Υ
	Default = Y
4) Accident Costs? (y/n)	Υ
	Default = Y
5) Vehicle Emissions? (y/n)	Υ
includes value for CO ₂ e	Default = Y

	<u>To</u>	<u>ns</u>	Value (mil. \$)		
	Total Over	Average	Total Over	Average	
EMISSIONS REDUCTION	20 Years	Annual	20 Years	Annual	
CO Emissions Saved	196	10	\$0.0	\$0.0	
CO ₂ Emissions Saved	-33,172	-1,659	-\$1.0	-\$0.1	
NO _X Emissions Saved	-48	-2	-\$0.4	-\$0.0	
PM ₁₀ Emissions Saved	-2	0	-\$0.1	-\$0.0	
PM _{2.5} Emissions Saved	-2	0	·		
SO _X Emissions Saved	0	0	-\$0.0	-\$0.0	
VOC Emissions Saved	-2	0	-\$0.0	-\$0.0	
			•		

Travel Time

C

SUMMARY OF TRAVEL TIME BENEFITS

	HIGHWAY										
Year	Peak	Peak	Peak	Peak	Peak	Peak	Non-Peak	Non-Peak	Non-Peak		
1	HOV	Non-HOV	Weaving	Truck	Ramp	Arterial	Non-HOV	Weaving	Truck		
	\$0	\$1,074,136	\$0	\$210,866	\$0	\$0	\$1,446,125	\$0	\$251,135		
20	\$0	\$7,593,701	\$0	\$1,490,736	\$0	\$0	\$1,011,023	\$0	\$175,575		
	* 2 I	#4.040.400 T	*	***	40.1	*	** *** ***	40.1	***		
2	\$0	\$1,349,189	\$0	\$264,862	\$0	\$0	\$1,425,118	\$0	\$247,487		
3	\$0	\$1,629,162	\$0	\$319,824	\$0	\$0	\$1,403,587	\$0	\$243,748		
4	\$0	\$1,914,189	\$0	\$375,779	\$0	\$0	\$1,381,604	\$0	\$239,931		
5	\$0	\$2,204,466	\$0	\$432,764	\$0	\$0	\$1,359,236	\$0	\$236,046		
6	\$0	\$2,500,257	\$0	\$490,831	\$0	\$0	\$1,336,545	\$0	\$232,105		
7	\$0	\$2,801,895	\$0	\$550,046	\$0	\$0	\$1,313,589	\$0	\$228,119		
8	\$0	\$3,109,792	\$0	\$610,490	\$0	\$0	\$1,290,421	\$0	\$224,096		
9	\$0	\$3,424,441	\$0	\$672,260	\$0	\$0	\$1,267,092	\$0	\$220,044		
10	\$0	\$3,746,429	\$0	\$735,470	\$0	\$0	\$1,243,649	\$0	\$215,973		
11	\$0	\$4,076,445	\$0	\$800,256	\$0	\$0	\$1,220,135	\$0	\$211,890		
12	\$0	\$4,415,293	\$0	\$866,776	\$0	\$0	\$1,196,590	\$0	\$207,801		
13	\$0	\$4,763,906	\$0	\$935,213	\$0	\$0	\$1,173,051	\$0	\$203,713		
14	\$0	\$5,123,365	\$0	\$1,005,779	\$0	\$0	\$1,149,552	\$0	\$199,632		
15	\$0	\$5,494,921	\$0	\$1,078,720	\$0	\$0	\$1,126,126	\$0	\$195,564		
16	\$0	\$5,880,021	\$0	\$1,154,320	\$0	\$0	\$1,102,802	\$0	\$191,513		
17	\$0	\$6,280,339	\$0	\$1,232,907	\$0	\$0	\$1,079,605	\$0	\$187,485		
18	\$0	\$6,697,821	\$0	\$1,314,864	\$0	\$0	\$1,056,562	\$0	\$183,483		
19	\$0	\$7,134,727	\$0	\$1,400,634	\$0	\$0	\$1,033,694	\$0	\$179,512		
10	ΨΟ	ψ1,104,121	ΨΟ	Ψ1,700,004	ΨΟ	ΨΟ	Ψ1,000,004	ΨΟ	ψ173,312		
Total	\$0	\$81,214,493	\$0	\$15,943,397	\$0	\$0	\$24,616,106	\$0	\$4,274,853		

Transportation Economics

Caltrans DOTP

Cal-B/C Travel Time

Page 13

11/30/2023

SUMMARY OF TRAVEL TIME BENEFITS (continued)

		TRAI	NSIT		Present Value of		Total Per-Hrs
Year	Peak	Peak	Non-Peak	Non-Peak	Travel Time	Constant	of Time
	In-Vehicle	Out-of-Veh	In-Vehicle	Out-of-Veh	Benefits	Dollars	Saved
1	\$0	\$0	\$0	\$0	\$2,982,262	\$3,354,639	186,177
20	\$0	\$0	\$0	\$0	\$10,271,035	\$24,341,518	1,344,832
2	\$0	\$0	\$0	\$0	\$3,286,656	\$3,844,923	213,260
3	\$0	\$0	\$0	\$0	\$3,596,322	\$4,375,475	242,564
4	\$0	\$0	\$0	\$0	\$3,911,502	\$4,949,298	274,257
5	\$0	\$0	\$0	\$0	\$4,232,512	\$5,569,697	308,520
6	\$0	\$0	\$0	\$0	\$4,559,739	\$6,240,317	345,554
7	\$0	\$0	\$0	\$0	\$4,893,649	\$6,965,189	385,582
8	\$0	\$0	\$0	\$0	\$5,234,798	\$7,748,780	428,851
9	\$0	\$0	\$0	\$0	\$5,583,837	\$8,596,060	475,634
10	\$0	\$0	\$0	\$0	\$5,941,521	\$9,512,566	526,237
11	\$0	\$0	\$0	\$0	\$6,308,725	\$10,504,491	581,003
12	\$0	\$0	\$0	\$0	\$6,686,459	\$11,578,783	640,313
13	\$0	\$0	\$0	\$0	\$7,075,882	\$12,743,264	704,601
14	\$0	\$0	\$0	\$0	\$7,478,329	\$14,006,769	774,354
15	\$0	\$0	\$0	\$0	\$7,895,331	\$15,379,320	850,124
16	\$0	\$0	\$0	\$0	\$8,328,656	\$16,872,329	932,542
17	\$0	\$0	\$0	\$0	\$8,780,337	\$18,498,846	1,022,327
18	\$0	\$0	\$0	\$0	\$9,252,730	\$20,273,872	1,120,308
19	\$0	\$0	\$0	\$0	\$9,748,568	\$22,214,725	1,227,440
	-			,			
Total	\$0	\$0	\$0	\$0	\$126,048,849	\$227,570,861	12,584,479

Travel Time Reliability Benefits

This sheet calculates total travel time reliability benefits on highway.

Formulas:				
		Std. Dev. Of TTI = (0.71 x (TTI Mean - 1) ^ 0.56	6) x Impacted Length / FF Speed	
Recurring Delay Rate = 1 / Est. Act. Speed - 1 / FF Speed		hours/vehicle	mi	mph
hours/mi mph mph		Reliability Savings = Change in Std. Dev. Of TT	I x Avg. Value of Reliability	
Recurring TTI Mean = 1 + Recurring Delay Rate x FF Speed		\$/yr	nrs/yr	\$/hr
hours/mi m	ph	Avg. Value of Reliability = Avg. Value of Time x	Reliability Ratio	
TTI Mean = 1.0274 x Recurring TTI Mean ^ 1.2204		\$/hr	\$/hr	
		Induced = Change in Trips x Change in Std. De	v. of TTI x 0.5	
				

A

HIGHWAY BENEFITS

Peak Period HOV

2 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 3 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 4 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 5 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 6 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 7 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 8 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 9 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 10 0 0 55.0 55.0 0.003 0.004 0.028 0.02		AVERAGE	VOLUME	AVERAGE SPEED RECURRING DELAY RATE STANDARD DEVIATION RELI		RELIABILIT	Y BENEFIT				
No Build Build No Build Build No Build Build No Build Build Build Build Users (Induced)		(vehicle	es/day)	(m _l	oh)	(hrs	/mi)	OF TRAVEL	OF TRAVEL TIME INDEX		hours/yr)
1 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 20 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 2 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 3 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 4 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 5 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 6 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 7 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 8 0 0 55.0 55.0 0.003 0.004 0.028 0.02	Year									Existing	New
20 0 55.0 55.0 0.003 0.004 0.028 0.028 0 2 0 0 55.0 55.0 0.003 0.004 0.028 0 0 3 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 4 0 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 5 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 6 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 7 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 8 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 9 0 0 55.0 55.0 0.003 0.004 0.028 0.028 <th></th> <th>No Build</th> <th>Build</th> <th>No Build</th> <th>Build</th> <th>No Build</th> <th>Build</th> <th>No Build</th> <th>Build</th> <th>Users</th> <th>(Induced)</th>		No Build	Build	No Build	Build	No Build	Build	No Build	Build	Users	(Induced)
2 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 3 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 4 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 5 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 6 0 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 7 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 8 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 9 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 10 0 0 55.0 55.0 0.003 0.004 0.028 <td>1</td> <td>0</td> <td>0</td> <td>55.0</td> <td>55.0</td> <td>0.003</td> <td>0.004</td> <td>0.028</td> <td>0.028</td> <td>0</td> <td>0</td>	1	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0
3 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 4 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 5 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 6 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 7 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 8 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 9 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 10 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 11 0 0 55.0 55.0 0.003 0.004 0.028 0.0	20	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0
3 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 4 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 5 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 6 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 7 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 8 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 9 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 10 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 11 0 0 55.0 55.0 0.003 0.004 0.028 0.0			·			· 					
4 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 5 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 6 0 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 7 0 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 8 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 9 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 10 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 11 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 12 0 0 55.0 55.0 0.003 0.004	2	0	0							0	0
5 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 6 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 7 0 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 8 0 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 9 0 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 10 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 11 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 12 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 13 0 0 55.0 55.0 0.003	3	0	0		55.0			0.028		0	0
6 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 7 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 8 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 9 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 10 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 11 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 12 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 13 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 14 0 0 55.0 55.0 0.003 0.004 0.028	4	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0
7 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 8 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 9 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 10 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 11 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 12 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 13 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 14 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 15 0 0 55.0 55.0 0.003 0.004 0.028 <td< td=""><td>5</td><td>0</td><td>0</td><td>55.0</td><td>55.0</td><td>0.003</td><td>0.004</td><td>0.028</td><td>0.028</td><td>0</td><td>0</td></td<>	5	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0
8 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 9 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 10 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 11 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 12 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 13 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 14 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 15 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 16 0 0 55.0 55.0 0.003 0.004 0.028 <t< td=""><td>6</td><td>0</td><td>0</td><td>55.0</td><td>55.0</td><td>0.003</td><td>0.004</td><td>0.028</td><td>0.028</td><td>0</td><td>0</td></t<>	6	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0
9 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 10 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 11 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 12 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 13 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 14 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 15 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 16 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 17 0 0 55.0 55.0 0.003 0.004 0.028 <	7	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0
10 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 11 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 12 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 13 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 14 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 15 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 16 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 17 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 18 0 0 55.0 55.0 0.003 0.004 0.028	8	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0
11 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 12 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 13 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 14 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 15 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 16 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 17 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 18 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0	9	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0
12 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 13 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 14 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 15 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 16 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 17 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 18 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0	10	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0
13 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 14 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 15 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 16 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 17 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 18 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0	11	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0
14 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 15 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 16 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 17 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 18 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0	12	0	0			0.003	0.004	0.028		0	0
15 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 16 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 17 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 18 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0	13	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0
16 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 17 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 18 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0	14	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0
17 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0 18 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0	15	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0
18 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0		0	0	55.0	55.0	0.003	0.004	0.028		0	0
	17	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0
19 0 0 55.0 55.0 0.003 0.004 0.028 0.028 0	18	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0
	19	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0
	otal										

Peak Period Non-HOV

	AVERAGE	VOLUME	AVERAG	E SPEED	RECURRING	DELAY RATE			STANDARD DEVIATION		RELIABILITY	/ BENEFIT		
	(vehicle	es/day)	(m	(mph)		(hrs/mi)		TIME INDEX	(person-h	ours/yr)				
Year							(hrs/\	/eh)	Existing	New	Constant	Present		
	No Build	Build	No Build	Build	No Build	Build	No Build	Build	Users	(Induced)	Dollars	Value		
1	28,375	28,375	66.9	70.0	0.000	0.000	0.010	0.007	35,900	0	\$472,449	\$420,005		
20	41,794	41,794	37.9	69.0	0.012	0.000	0.055	0.009	816,192	0	\$10,741,093	\$4,532,262		
								,						
2	29,081	29,081	65.4	69.9	0.001	0.000	0.013	0.007	71,674	0	\$943,224	\$806,271		
3	29,787	29,787	63.8	69.9	0.001	0.000	0.015	0.007	104,766	0	\$1,378,726	\$1,133,212		

4	30,493	30,493	62.3	69.8	0.001	0.000	0.018	0.007	136,830	0	\$1,800,684	\$1,423,107
5	31,200	31,200	60.8	69.8	0.002	0.000	0.020	0.007	168,686	0	\$2,219,904	\$1,686,945
6	31,906	31,906	59.2	69.7	0.002	0.000	0.022	0.007	200,830	0	\$2,642,929	\$1,931,162
7	32,612	32,612	57.7	69.7	0.003	0.000	0.024	0.007	233,609	0	\$3,074,291	\$2,159,956
8	33,319	33,319	56.2	69.6	0.003	0.000	0.026	0.007	267,285	0	\$3,517,473	\$2,376,279
9	34,025	34,025	54.7	69.6	0.004	0.000	0.029	0.007	302,081	0	\$3,975,387	\$2,582,336
10	34,731	34,731	53.1	69.5	0.004	0.000	0.031	0.008	338,195	0	\$4,450,641	\$2,779,857
11	35,438	35,438	51.6	69.5	0.005	0.000	0.033	0.008	375,813	0	\$4,945,700	\$2,970,259
12	36,144	36,144	50.1	69.4	0.005	0.000	0.035	0.008	415,121	0	\$5,462,998	\$3,154,746
13	36,850	36,850	48.6	69.4	0.006	0.000	0.037	0.008	456,309	0	\$6,005,022	\$3,334,376
14	37,557	37,557	47.0	69.3	0.007	0.000	0.040	0.008	499,573	0	\$6,574,376	\$3,510,113
15	38,263	38,263	45.5	69.3	0.007	0.000	0.042	0.008	545,125	0	\$7,173,845	\$3,682,860
16	38,969	38,969	44.0	69.2	0.008	0.000	0.044	0.008	593,196	0	\$7,806,457	\$3,853,487
17	39,675	39,675	42.4	69.2	0.009	0.000	0.047	0.008	644,038	0	\$8,475,543	\$4,022,852
18	40,382	40,382	40.9	69.1	0.010	0.000	0.050	0.008	697,934	0	\$9,184,810	\$4,191,827
19	41,088	41,088	39.4	69.1	0.011	0.000	0.052	0.008	755,199	0	\$9,938,421	\$4,361,313

Total \$54,913,225

Peak Period Weaving

	AVERAGE V		AVERAGE		RECURRING		STANDARD		RELIABILITY BENEFIT			
	(vehicles	s/day)	(mp	oh)	(hrs/mi)		OF TRAVEL TIME INDEX		(person-hours/yr)			
Year							(hrs/	veh)	Existing	New	Constant	Present
	No Build	Build	No Build	Build	No Build	Build	No Build	Build	Users	(Induced)	Dollars	Value
1	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0
20	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0
2	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0
3	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0
4	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0
5	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0
6	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0
7	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0
8	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0
9	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0
10	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0
11	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0
12	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0
13	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0
14	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0
15	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0 \$0
16	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0
17	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0
18	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0
19	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0

Total \$0

Peak Period Truck

	AVERAGE VOLUME (vehicles/day)		AVERAGE SPEED (mph)		RECURRING DELAY RATE (hrs/mi)		STANDARD DEVIATION OF TRAVEL TIME INDEX		RELIABILITY BENEFIT (person-hours/yr)			
Year		(hrs/veh)		Existing	New	Constant	Present					
	No Build	Build	No Build	Build	No Build	Build	No Build	Build	Users	(Induced)	Dollars	Value
1	2,806	2,806	66.9	70.0	0.000	0.000	0.010	0.007	3,087	0	\$127,528	\$113,372
20	4,134	4,134	37.9	69.0	0.012	0.000	0.055	0.009	70,193	0	\$2,899,336	\$1,223,390
2	2,876	2,876	65.4	69.9	0.001	0.000	0.013	0.007	6,164	0	\$254,604	\$217,636
3	2,946	2,946	63.8	69.9	0.001	0.000	0.015	0.007	9,010	0	\$372,159	\$305,887
4	3,016	3,016	62.3	69.8	0.001	0.000	0.018	0.007	11,768	0	\$486,057	\$384,138

5	3,086	3,086	60.8	69.8	0.002	0.000	0.020	0.007	14,507	0	\$599,217	\$455,356
6	3,156	3,156	59.2	69.7	0.002	0.000	0.022	0.007	17,272	0	\$713,404	\$521,277
7	3,225	3,225	57.7	69.7	0.003	0.000	0.024	0.007	20,091	0	\$829,841	\$583,035
8	3,295	3,295	56.2	69.6	0.003	0.000	0.026	0.007	22,987	0	\$949,469	\$641,427
9	3,365	3,365	54.7	69.6	0.004	0.000	0.029	0.007	25,979	0	\$1,073,073	\$697,048
10	3,435	3,435	53.1	69.5	0.004	0.000	0.031	0.008	29,085	0	\$1,201,358	\$750,365
11	3,505	3,505	51.6	69.5	0.005	0.000	0.033	0.008	32,320	0	\$1,334,989	\$801,760
12	3,575	3,575	50.1	69.4	0.005	0.000	0.035	0.008	35,701	0	\$1,474,623	\$851,558
13	3,645	3,645	48.6	69.4	0.006	0.000	0.037	0.008	39,243	0	\$1,620,931	\$900,046
14	3,714	3,714	47.0	69.3	0.007	0.000	0.040	0.008	42,964	0	\$1,774,617	\$947,482
15	3,784	3,784	45.5	69.3	0.007	0.000	0.042	0.008	46,881	0	\$1,936,431	\$994,112
16	3,854	3,854	44.0	69.2	0.008	0.000	0.044	0.008	51,015	0	\$2,107,191	\$1,040,169
17	3,924	3,924	42.4	69.2	0.009	0.000	0.047	0.008	55,388	0	\$2,287,797	\$1,085,886
18	3,994	3,994	40.9	69.1	0.010	0.000	0.050	0.008	60,023	0	\$2,479,249	\$1,131,497
19	4,064	4,064	39.4	69.1	0.011	0.000	0.052	0.008	64,948	0	\$2,682,671	\$1,177,246

Total \$14,822,688

Non-Peak Period Non-HOV

	AVERAGE	VOLUME	AVERAGE	SPEED	RECURRING	DELAY RATE	STANDARD	DEVIATION	RELIABILIT	Y BENEFIT		
	(vehicle	es/day)	(mp	oh)	(hrs	/mi)	OF TRAVEL	TIME INDEX	(person-h	nours/yr)		
Year	,		Ì	•	,	,	(hrs/	veh)	Existing	New	Constant	Present
	No Build	Build	No Build	Build	No Build	Build	No Build	Build	Users	(Induced)	Dollars	Value
1	42,034	42,034	68.0	70.0	0.000	0.000	0.007	0.006	9,370	0	\$123,314	\$109,626
20	61,914	61,914	68.0	70.0	0.000	0.000	0.007	0.006	14,128	0	\$185,925	\$78,452
2	43,080	43,080	68.0	70.0	0.000	0.000	0.007	0.006	9,616	0	\$126,541	\$108,168
3	44,126	44,126	68.0	70.0	0.000	0.000	0.007	0.006	9,861	0	\$129,775	\$106,666
4	45,173	45,173	68.0	70.0	0.000	0.000	0.007	0.006	10,108	0	\$133,017	\$105,125
5	46,219	46,219	68.0	70.0	0.000	0.000	0.007	0.006	10,355	0	\$136,267	\$103,551
6	47,265	47,265	68.0	70.0	0.000	0.000	0.007	0.006	10,602	0	\$139,524	\$101,949
7	48,312	48,312	68.0	70.0	0.000	0.000	0.007	0.006	10,850	0	\$142,789	\$100,321
8	49,358	49,358	68.0	70.0	0.000	0.000	0.007	0.006	11,099	0	\$146,061	\$98,674
9	50,404	50,404	68.0	70.0	0.000	0.000	0.007	0.006	11,348	0	\$149,341	\$97,009
10	51,451	51,451	68.0	70.0	0.000	0.000	0.007	0.006	11,598	0	\$152,629	\$95,332
11	52,497	52,497	68.0	70.0	0.000	0.000	0.007	0.006	11,848	0	\$155,924	\$93,644
12	53,543	53,543	68.0	70.0	0.000	0.000	0.007	0.006	12,099	0	\$159,227	\$91,950
13	54,590	54,590	68.0	70.0	0.000	0.000	0.007	0.006	12,351	0	\$162,538	\$90,251
14	55,636	55,636	68.0	70.0	0.000	0.000	0.007	0.006	12,603	0	\$165,856	\$88,552
15	56,682	56,682	68.0	70.0	0.000	0.000	0.007	0.006	12,856	0	\$169,182	\$86,853
16	57,729	57,729	68.0	70.0	0.000	0.000	0.007	0.006	13,109	0	\$172,515	\$85,158
17	58,775	58,775	68.0	70.0	0.000	0.000	0.007	0.006	13,363	0	\$175,856	\$83,469
18	59,821	59,821	68.0	70.0	0.000	0.000	0.007	0.006	13,617	0	\$179,205	\$81,787
19	60,867	60,867	68.0	70.0	0.000	0.000	0.007	0.006	13,872	0	\$182,561	\$80,114

Total \$1,886,651

Non-Peak Period Weaving

	AVERAGE VOLUME AVERAGE S (vehicles/day) (mph)				OF TRAVEL	OF TRAVEL TIME INDEX		RELIABILITY BENEFIT (person-hours/yr)				
Year							(hrs/	,	Existing	New	Constant	Present
	No Build	Build	No Build	Build	No Build	Build	No Build	Build	Users	(Induced)	Dollars	Value
1	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0
20	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0
2	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0
3	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0
4	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0
5	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0

6	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0
7	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0
8	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0
9	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0
10	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0
11	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0
12	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0
13	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0
14	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0
15	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0
16	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0
17	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0
18	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0
19	0	0	55.0	55.0	0.003	0.004	0.028	0.028	0	0	\$0	\$0

Total \$0

Non-Peak Period Truck

	AVERAGE	VOLUME	AVERAG	E SPEED	RECURRING	DELAY RATE	STANDARD I	DEVIATION	RELIABILITY	BENEFIT		
	(vehicle	es/day)	(mp	oh)	(hrs	/mi)	OF TRAVEL 1	TIME INDEX	(person-ho	ours/yr)		
Year							(hrs/v	reh)	Existing	New	Constant	Present
	No Build	Build	No Build	Build	No Build	Build	No Build	Build	Users	(Induced)	Dollars	Value
1	4,157	4,157	68.0	70.0	0.000	0.000	0.007	0.006	713	0	\$29,445	\$26,177
20	6,123	6,123	68.0	70.0	0.000	0.000	0.007	0.006	1,075	0	\$44,396	\$18,733
2	4,261	4,261	68.0	70.0	0.000	0.000	0.007	0.006	732	0	\$30,216	\$25,829
3	4,364	4,364	68.0	70.0	0.000	0.000	0.007	0.006	750	0	\$30,988	\$25,470
4	4,468	4,468	68.0	70.0	0.000	0.000	0.007	0.006	769	0	\$31,762	\$25,102
5	4,571	4,571	68.0	70.0	0.000	0.000	0.007	0.006	788	0	\$32,538	\$24,726
6	4,675	4,675	68.0	70.0	0.000	0.000	0.007	0.006	807	0	\$33,316	\$24,344
7	4,778	4,778	68.0	70.0	0.000	0.000	0.007	0.006	825	0	\$34,096	\$23,955
8	4,882	4,882	68.0	70.0	0.000	0.000	0.007	0.006	844	0	\$34,877	\$23,562
9	4,985	4,985	68.0	70.0	0.000	0.000	0.007	0.006	863	0	\$35,660	\$23,164
10	5,089	5,089	68.0	70.0	0.000	0.000	0.007	0.006	882	0	\$36,445	\$22,764
11	5,192	5,192	68.0	70.0	0.000	0.000	0.007	0.006	901	0	\$37,232	\$22,361
12	5,295	5,295	68.0	70.0	0.000	0.000	0.007	0.006	920	0	\$38,021	\$21,956
13	5,399	5,399	68.0	70.0	0.000	0.000	0.007	0.006	940	0	\$38,811	\$21,551
14	5,502	5,502	68.0	70.0	0.000	0.000	0.007	0.006	959	0	\$39,604	\$21,145
15	5,606	5,606	68.0	70.0	0.000	0.000	0.007	0.006	978	0	\$40,398	\$20,739
16	5,709	5,709	68.0	70.0	0.000	0.000	0.007	0.006	997	0	\$41,194	\$20,334
17	5,813	5,813	68.0	70.0	0.000	0.000	0.007	0.006	1,017	0	\$41,992	\$19,931
18	5,916	5,916	68.0	70.0	0.000	0.000	0.007	0.006	1,036	0	\$42,791	\$19,529
19	6,020	6,020	68.0	70.0	0.000	0.000	0.007	0.006	1,055	0	\$43,593	\$19,130

Total \$450,501

\bigcirc B

TRANSIT BENEFITS

Peak Period In-Vehicle Transit

	ANNU	AL PERSON-T	RIPS	STAN	IDARD DEVIA	ΓΙΟΝ	RE	LIABILITY CO	ST T		
		(trips/yr)			(hours/trip)		(person-hours/yr)			
Year			Mode			Existing	Existing	Mode	New	Constant	Present
	No Build	Build	Shifts	No Build	Build	Highway	Users	Shifts	(Induced)	Dollars	Value
1	0	0	0	0.000	0.000	0.010	0	0	0	\$0	\$0
20	0	0	0	0.000	0.000	0.055	0	0	0	\$0	\$0
2	0	0	0	0.000	0.000	0.013	0	0	0	\$0	\$0
3	0	0	0	0.000	0.000	0.015	0	0	0	\$0	\$0
4	0	0	0	0.000	0.000	0.018	0	0	0	\$0	\$0
5	0	0	0	0.000	0.000	0.020	0	0	0	\$0	\$0
6	0	0	0	0.000	0.000	0.022	0	0	0	\$0	\$0
7	0	0	0	0.000	0.000	0.024	0	0	0	\$0	\$0
8	0	0	0	0.000	0.000	0.026	0	0	0	\$0	\$0
9	0	0	0	0.000	0.000	0.029	0	0	0	\$0	\$0
10	0	0	0	0.000	0.000	0.031	0	0	0	\$0	\$0
11	0	0	0	0.000	0.000	0.033	0	0	0	\$0	\$0
12	0	0	0	0.000	0.000	0.035	0	0	0	\$0	\$0
13	0	0	0	0.000	0.000	0.037	0	0	0	\$0	\$0
14	0	0	0	0.000	0.000	0.040	0	0	0	\$0	\$0
15	0	0	0	0.000	0.000	0.042	0	0	0	\$0	\$0
16	0	0	0	0.000	0.000	0.044	0	0	0	\$0	\$0
17	0	0	0	0.000	0.000	0.047	0	0	0	\$0	\$0
18	0	0	0	0.000	0.000	0.050	0	0	0	\$0	\$0
19	0	0	0	0.000	0.000	0.052	0	0	0	\$0	\$0
Total											\$0

Non-Peak Period In-Vehicle Transit

	ANNU	JAL PERSON-T (trips/yr)	RIPS	STAN	NDARD DEVIA (hours/trip)	TION		LIABILITY CO (person-hours/yr)			
Year	N. 5	Mode Build Shifts		N. 5 71	D 114	Existing	Existing	Mode	New	Constant	Present
	No Build	Build Shifts		No Build	Build	Highway	Users	Shifts	(Induced)	Dollars	Value
1	0	0 0		0.000	0.000	0.007	0	0	0	\$0	\$0
20	0	0	0	0.000	0.000	0.007	0	0	0	\$0	\$0
2	0	0	0	0.000	0.000	0.007	0	0	0	\$0	\$0
3	0	0	0	0.000	0.000	0.007	0	0	0	\$0	\$0

4	0	0	0	0.000	0.000	0.007	0	0	0	\$0	\$0
5	0	0	0	0.000	0.000	0.007	0	0	0	\$0	\$0
6	0	0	0	0.000	0.000	0.007	0	0	0	\$0	\$0
7	0	0	0	0.000	0.000	0.007	0	0	0	\$0	\$0
8	0	0	0	0.000	0.000	0.007	0	0	0	\$0	\$0
9	0	0	0	0.000	0.000	0.007	0	0	0	\$0	\$0
10	0	0	0	0.000	0.000	0.007	0	0	0	\$0	\$0
11	0	0	0	0.000	0.000	0.007	0	0	0	\$0	\$0
12	0	0	0	0.000	0.000	0.007	0	0	0	\$0	\$0
13	0	0	0	0.000	0.000	0.007	0	0	0	\$0	\$0
14	0	0	0	0.000	0.000	0.007	0	0	0	\$0	\$0
15	0	0	0	0.000	0.000	0.007	0	0	0	\$0	\$0
16	0	0	0	0.000	0.000	0.007	0	0	0	\$0	\$0
17	0	0	0	0.000	0.000	0.007	0	0	0	\$0	\$0
18	0	0	0	0.000	0.000	0.007	0	0	0	\$0	\$0
19	0	0	0	0.000	0.000	0.007	0	0	0	\$0	\$0

Total \$0

SUMMARY OF TRAVEL TIME RELIABILITY BENEFITS

				HIGHWAY				TRAI	NSIT	Present	
		,			,	,		,		Value of	
Year	Peak	Peak	Peak	Peak	Non-Peak	Non-Peak	Non-Peak	Peak	Non-Peak	Reliability	Constant
	HOV	Non-HOV	Weaving	Truck	Non-HOV	Weaving	Truck	In-Vehicle	In-Vehicle	Benefits	Dollars
1	\$0	\$420,005	\$0	\$113,372	\$109,626	\$0	\$26,177	\$0	\$0	\$669,180	\$752,736
20	\$0	\$4,532,262	\$0	\$1,223,390	\$78,452	\$0	\$18,733	\$0	\$0	\$5,852,837	\$13,870,749
2	\$0	\$806,271	\$0	\$217,636	\$108,168	\$0	\$25,829	\$0	\$0	\$1,157,904	\$1,354,584
3	\$0	\$1,133,212	\$0	\$305,887	\$106,666	\$0	\$25,470	\$0	\$0	\$1,571,235	\$1,911,648
4	\$0	\$1,423,107	\$0	\$384,138	\$105,125	\$0	\$25,102	\$0	\$0	\$1,937,472	\$2,451,521
5	\$0	\$1,686,945	\$0	\$455,356	\$103,551	\$0	\$24,726	\$0	\$0	\$2,270,578	\$2,987,926
6	\$0	\$1,931,162	\$0	\$521,277	\$101,949	\$0	\$24,344	\$0	\$0	\$2,578,732	\$3,529,173
7	\$0	\$2,159,956	\$0	\$583,035	\$100,321	\$0	\$23,955	\$0	\$0	\$2,867,268	\$4,081,016
8	\$0	\$2,376,279	\$0	\$641,427	\$98,674	\$0	\$23,562	\$0	\$0	\$3,139,941	\$4,647,880
9	\$0	\$2,582,336	\$0	\$697,048	\$97,009	\$0	\$23,164	\$0	\$0	\$3,399,557	\$5,233,462
10	\$0	\$2,779,857	\$0	\$750,365	\$95,332	\$0	\$22,764	\$0	\$0	\$3,648,317	\$5,841,074
11	\$0	\$2,970,259	\$0	\$801,760	\$93,644	\$0	\$22,361	\$0	\$0	\$3,888,024	\$6,473,846
12	\$0	\$3,154,746	\$0	\$851,558	\$91,950	\$0	\$21,956	\$0	\$0	\$4,120,210	\$7,134,870
13	\$0	\$3,334,376	\$0	\$900,046	\$90,251	\$0	\$21,551	\$0	\$0	\$4,346,223	\$7,827,302
14	\$0	\$3,510,113	\$0	\$947,482	\$88,552	\$0	\$21,145	\$0	\$0	\$4,567,292	\$8,554,452
15	\$0	\$3,682,860	\$0	\$994,112	\$86,853	\$0	\$20,739	\$0	\$0	\$4,784,564	\$9,319,856
16	\$0	\$3,853,487	\$0	\$1,040,169	\$85,158	\$0	\$20,334	\$0	\$0	\$4,999,148	\$10,127,357
17	\$0	\$4,022,852	\$0	\$1,085,886	\$83,469	\$0	\$19,931	\$0	\$0	\$5,212,138	\$10,981,188
18	\$0	\$4,191,827	\$0	\$1,131,497	\$81,787	\$0	\$19,529	\$0	\$0	\$5,424,640	\$11,886,055
19	\$0	\$4,361,313	\$0	\$1,177,246	\$80,114	\$0	\$19,130	\$0	\$0	\$5,637,803	\$12,847,246
Total	\$0	\$54,913,225	\$0	\$14,822,688	\$1,886,651	\$0	\$450,501	\$0	\$0	\$72,073,065	\$131,813,939

Vehicle Operating Costs

SUMMARY OF VEHICLE OPERATING COST BENEFITS

				HIGH	WAY				TRA	NSIT	Present	
						_					Value of	
Year	Peak	Peak	Peak	Peak	Peak	Non-Peak	Non-Peak	Non-Peak	Peak	Non-Peak	Veh Op Cost	Constant
	HOV	Non-HOV	Weaving	Truck	Arterial	Non-HOV	Weaving	Truck	Period	Period	Benefits	Dollars
1	\$0	\$801,937	\$0	\$176,101	\$0	\$1,228,900	\$0	\$232,547	-	-	\$2,439,485	\$2,744,088
20	\$0	(\$48,019)	\$0	(\$185,867)	\$0	\$859,155	\$0	\$162,579	-	-	\$787,848	\$1,867,135
2	\$0	\$803,354	\$0	\$173,945	\$0	\$1,211,048	\$0	\$229,168	-	-	\$2,417,515	\$2,828,150
3	\$0	\$724,194	\$0	\$119,349	\$0	\$1,192,751	\$0	\$225,706	-	-	\$2,262,001	\$2,752,070
4	\$0	\$673,269	\$0	\$91,903	\$0	\$1,174,070	\$0	\$222,171	-	-	\$2,161,413	\$2,734,878
5	\$0	\$597,465	\$0	\$42,486	\$0	\$1,155,062	\$0	\$218,574	-	-	\$2,013,587	\$2,649,743
6	\$0	\$549,198	\$0	(\$14,778)	\$0	\$1,135,780	\$0	\$214,925	-	-	\$1,885,125	\$2,579,923
7	\$0	\$477,041	\$0	(\$116,428)	\$0	\$1,116,272	\$0	\$211,234	-	-	\$1,688,118	\$2,402,719
8	\$0	\$431,656	\$0	(\$162,152)	\$0	\$1,096,584	\$0	\$207,508	-	-	\$1,573,596	\$2,329,307
9	\$0	\$339,146	\$0	(\$238,528)	\$0	\$1,076,759	\$0	\$203,757	-	-	\$1,381,135	\$2,126,194
10	\$0	\$273,487	\$0	(\$267,005)	\$0	\$1,056,838	\$0	\$199,987	-	-	\$1,263,307	\$2,022,595
11	\$0	\$163,444	\$0	(\$323,266)	\$0	\$1,036,856	\$0	\$196,206	-	-	\$1,073,240	\$1,787,023
12	\$0	\$114,580	\$0	(\$345,509)	\$0	\$1,016,847	\$0	\$192,420	-	-	\$978,338	\$1,694,165
13	\$0	\$33,907	\$0	(\$285,973)	\$0	\$996,844	\$0	\$188,634	-	-	\$933,413	\$1,681,023
14	\$0	\$293	\$0	(\$252,883)	\$0	\$976,876	\$0	\$184,856	-	-	\$909,141	\$1,702,804
15	\$0	(\$74,995)		(\$192,136)	\$0	\$956,968	\$0	\$181,089	-	-	\$870,925	\$1,696,475
16	\$0	(\$73,442)	\$0	(\$188,157)	\$0	\$937,147	\$0	\$177,338	-	-	\$852,886	\$1,727,791
17	\$0	(\$82,208)	\$0	(\$185,151)	\$0	\$917,436	\$0	\$173,608	-	-	\$823,685	\$1,735,379
18	\$0	(\$90,543)	\$0	(\$182,130)	\$0	\$897,854	\$0	\$169,902	-	-	\$795,082	\$1,742,123
19	\$0	(\$68,840)	\$0	(\$181,834)	\$0	\$878,421	\$0	\$166,225	-	-	\$793,972	\$1,809,279
Total	\$0	\$5,544,923	\$0	(\$2,518,012)	\$0	\$20,918,467	\$0	\$3,958,433	_	_	\$27,903,811	\$42,612,865

Accident Costs

SUMMARY OF ACCIDENT REDUCTION BENEFITS

				HIGH	WAY				TRANSIT	Present	
										Value of	
Year	Peak	Peak	Peak	Peak	Peak	Non-Peak	Non-Peak	Non-Peak	All	Accident	Constant
	HOV	Non-HOV	Weaving	Truck	Arterial	Non-HOV	Weaving	Truck	Periods	Benefits	Dollars
1	\$0	\$980,231	\$0	\$96,946	\$0	\$1,452,103	\$0	\$143,615	\$0	\$2,672,895	\$3,006,643
20	\$0	\$685,304	\$0	\$67,777	\$0	\$1,015,202	\$0	\$100,405	\$0	\$1,868,688	\$4,428,639
2	\$0	\$965,991	\$0	\$95,538	\$0	\$1,431,009	\$0	\$141,528	\$0	\$2,634,066	\$3,081,485
3	\$0	\$951,397	\$0	\$94,094	\$0	\$1,409,389	\$0	\$139,390	\$0	\$2,594,271	\$3,156,327
4	\$0	\$936,496	\$0	\$92,621	\$0	\$1,387,316	\$0	\$137,207	\$0	\$2,553,640	\$3,231,169
5	\$0	\$921,334	\$0	\$91,121	\$0	\$1,364,855	\$0	\$134,986	\$0	\$2,512,296	\$3,306,011
6	\$0	\$905,954	\$0	\$89,600	\$0	\$1,342,070	\$0	\$132,732	\$0	\$2,470,356	\$3,380,853
7	\$0	\$890,393	\$0	\$88,061	\$0	\$1,319,019	\$0	\$130,452	\$0	\$2,427,925	\$3,455,694
8	\$0	\$874,689	\$0	\$86,508	\$0	\$1,295,755	\$0	\$128,152	\$0	\$2,385,104	\$3,530,536
9	\$0	\$858,876	\$0	\$84,944	\$0	\$1,272,330	\$0	\$125,835	\$0	\$2,341,985	\$3,605,378
10	\$0	\$842,986	\$0	\$83,372	\$0	\$1,248,790	\$0	\$123,507	\$0	\$2,298,655	\$3,680,220
11	\$0	\$827,047	\$0	\$81,796	\$0	\$1,225,179	\$0	\$121,172	\$0	\$2,255,193	\$3,755,062
12	\$0	\$811,087	\$0	\$80,217	\$0	\$1,201,536	\$0	\$118,833	\$0	\$2,211,674	\$3,829,904
13	\$0	\$795,132	\$0	\$78,639	\$0	\$1,177,900	\$0	\$116,496	\$0	\$2,168,167	\$3,904,746
14	\$0	\$779,204	\$0	\$77,064	\$0	\$1,154,304	\$0	\$114,162	\$0	\$2,124,734	\$3,979,588
15	\$0	\$763,325	\$0	\$75,494	\$0	\$1,130,782	\$0	\$111,836	\$0	\$2,081,436	\$4,054,430
16	\$0	\$747,515	\$0	\$73,930	\$0	\$1,107,361	\$0	\$109,519	\$0	\$2,038,325	\$4,129,272
17	\$0	\$731,792	\$0	\$72,375	\$0	\$1,084,068	\$0	\$107,216	\$0	\$1,995,451	\$4,204,113
18	\$0	\$716,172	\$0	\$70,830	\$0	\$1,060,930	\$0	\$104,927	\$0	\$1,952,859	\$4,278,955
19	\$0	\$700,672	\$0	\$69,297	\$0	\$1,037,968	\$0	\$102,656	\$0	\$1,910,593	\$4,353,797
Total	\$0	\$16,685,596	\$0	\$1,650,224	\$0 I	\$24,717,867	\$0	\$2,444,624	\$0	\$45,498,311	\$74,352,822

Emissions

SUMMARY OF EMISSION REDUCTION BENEFITS

					HIGHWAY				
Year	Peak	Peak	Peak	Peak	Peak	Peak	Non-Peak	Non-Peak	Non-Peak
	HOV	Non-HOV	Weaving	Truck	Ramp	Arterial	Non-HOV	Weaving	Truck
1	\$0	\$31,122	\$0	\$31,018	\$0	\$0	\$51,548	\$0	\$36,322
20	\$0	(\$129,691)	\$0	(\$109,825)	\$0	\$0	\$39,639	\$0	\$15,676
2	\$0	\$30,237	\$0	\$31,501	\$0	\$0	\$51,742	\$0	\$36,400
3	\$0	\$15,545	\$0	\$7,649	\$0	\$0	\$51,908	\$0	\$36,458
4	\$0	\$7,726	\$0	(\$3,503)		\$0	\$52,046	\$0	\$36,498
5	\$0	(\$6,894)	\$0	(\$24,860)		\$0	\$52,158	\$0	\$36,521
6	\$0	(\$12,591)	\$0	(\$40,247)	\$0	\$0	\$52,245	\$0	\$36,526
7	\$0	(\$24,514)	\$0	(\$69,324)	\$0	\$0	\$52,307	\$0	\$36,515
8	\$0	(\$31,761)	\$0	(\$90,810)		\$0	\$40,187	\$0	\$16,259
9	\$0	(\$50,242)	\$0	(\$111,090)		\$0	\$40,222	\$0	\$16,240
10	\$0	(\$61,208)	\$0	(\$119,352)	\$0	\$0	\$40,241	\$0	\$16,214
11	\$0	(\$82,845)	\$0	(\$135,091)	\$0	\$0	\$40,243	\$0	\$16,182
12	\$0	(\$93,267)	\$0	(\$141,931)	\$0	\$0	\$40,230	\$0	\$16,145
13	\$0	(\$109,591)	\$0	(\$127,973)		\$0	\$40,202	\$0	\$16,102
14	\$0	(\$117,403)	\$0	(\$120,165)		\$0	\$40,160	\$0	\$16,055
15	\$0	(\$132,943)	\$0	(\$104,530)	\$0	\$0	\$40,104	\$0	\$16,002
16	\$0	(\$133,919)	\$0	(\$105,033)	\$0	\$0	\$40,035	\$0	\$15,945
17	\$0	(\$135,912)	\$0	(\$106,675)	\$0	\$0	\$39,954	\$0	\$15,884
18	\$0	(\$137,904)	\$0	(\$108,191)	\$0	\$0	\$39,860	\$0	\$15,818
19	\$0	(\$135,091)	\$0	(\$108,461)	\$0	\$0	\$39,755	\$0	\$15,749
Total	\$0	(\$1,311,145)	\$0	(\$1,556,893)	\$0	\$0	\$884,785	\$0	\$463,512

SUMMARY OF EMISSION REDUCTION BENEFITS (continued)

		TRA	NSIT		Present Value of	
Year	Peak	Non-Peak	Passenger	Light	Emission	Constant
	Bus	Bus	Rail	Rail	Benefits	Dollars
1	\$0	\$0	\$0	\$0	\$150,010	\$168,741
20	\$0	\$0	\$0	\$0	(\$184,201)	(\$436,542)
2	\$0	\$0	\$0	\$0	\$149,880	\$175,339
3	\$0	\$0	\$0	\$0	\$111,561	\$135,730
4	\$0	\$0	\$0	\$0	\$92,768	\$117,380
5	\$0	\$0	\$0	\$0	\$56,924	\$74,909
6	\$0	\$0	\$0	\$0	\$35,933	\$49,176
7	\$0	\$0	\$0	\$0	(\$5,015)	(\$7,139)
8	\$0	\$0	\$0	\$0	(\$66,125)	(\$97,882)
9	\$0	\$0	\$0	\$0	(\$104,870)	(\$161,442)
10	\$0	\$0	\$0	\$0	(\$124,105)	(\$198,697)
11	\$0	\$0	\$0	\$0	(\$161,510)	(\$268,926)
12	\$0	\$0	\$0	\$0	(\$178,823)	(\$309,664)
13	\$0	\$0	\$0	\$0	(\$181,260)	(\$326,439)
14	\$0	\$0	\$0	\$0	(\$181,354)	(\$339,673)
15	\$0	\$0	\$0	\$0	(\$181,367)	(\$353,285)
16	\$0	\$0	\$0	\$0	(\$182,972)	(\$370,667)
17	\$0	\$0	\$0	\$0	(\$186,749)	(\$393,453)
18	\$0	\$0	\$0	\$0	(\$190,416)	(\$417,225)
19	\$0	\$0	\$0	\$0	(\$188,048)	(\$428,518)
Total	\$0	\$0	\$0	\$0	(\$1,519,741)	(\$3,388,275)
TULAI	ψU	ψU	φU	φυ	(\$1,515,741)	(\$3,300,275)

SUMMARY OF EMISSION REDUCTION BENEFITS (continued)

			TONS	EMISSIONS S (tons/yr)	AVED		
Year	CO	CO ₂	NO _x	PM ₁₀	so _x	VOC	PM _{2.5}
1	5	3,011	1	0	0	0	0
20	17	(4,937)	(3)	(0)	(0)	(0)	(0)
<u>'</u>		(, , , ,	\ \ / I	(/)	()	(7)	(7)
2	5	3,093	1	0	0	0	0
3	6	2,566	(0)	(0)	0	(0)	(0)
4	6	2,325	(0)	(0)	0	(0)	(0)
5	7	1,774	(1)	(0)	0	(0)	(0)
6	8	1,299	(1)	(0)	0	(0)	(0)
7	10	331	(1)	(0)	0	(0)	(0)
8	7	(815)	(3)	(0)	(0)	(0)	(0)
9	8	(1,713)	(3)	(0)	(0)	(0)	(0)
10	9	(2,223)	(3)	(0)	(0)	(0)	(0)
11	9	(3,196)	(4)	(0)	(0)	(0)	(0)
12	9	(3,714)	(4)	(0)	(0)	(0)	(0)
13	10	(3,926)	(4)	(0)	(0)	(0)	(0)
14	11	(4,059)	(4)	(0)	(0)	(0)	(0)
15	11	(4,224)	(4)	(0)	(0)	(0)	(0)
16	12	(4,379)	(4)	(0)	(0)	(0)	(0)
17	13	(4,616)	(4)	(0)	(0)	(0)	(0)
18	15	(4,856)	(3)	(0)	(0)	(0)	(0)
19	16	(4,913)	(3)	(0)	(0)	(0)	(0)
Total	196	(33,172)	(48)	(2)	(0)	(2)	(2)

SUMMARY OF EMISSION REDUCTION BENEFITS (continued)

		D	OLLARS EMIS	SSIONS SAVE)	
Year	СО	CO ₂	NO _X	PM ₁₀	SO _x	voc
1	\$366	\$136,372	\$10,186	\$1,466	\$1,605	\$16
20	\$580	(\$154,584)	(\$21,541)	(\$7,432)	(\$1,207)	(\$18)
			(, , , , , , , , , , , , , , , , , , ,	\	()	()
2	\$361	\$137,354	\$9,945	\$912	\$1,288	\$21
3	\$386	\$111,779	(\$826)	(\$864)	\$1,124	(\$39)
4	\$395	\$99,336	(\$5,754)	(\$2,200)	\$1,050	(\$59)
5	\$418	\$74,319	(\$14,719)	(\$3,595)	\$613	(\$111)
6	\$472	\$53,386	(\$14,212)	(\$4,077)	\$466	(\$102)
7	\$587	\$13,344	(\$13,449)	(\$5,609)	\$189	(\$77)
8	\$396	(\$32,225)	(\$28,015)	(\$5,984)	(\$234)	(\$64)
9	\$424	(\$66,414)	(\$31,368)	(\$6,799)	(\$648)	(\$64)
10	\$425	(\$84,510)	(\$32,191)	(\$7,076)	(\$687)	(\$67)
11	\$435	(\$119,187)	(\$34,104)	(\$7,536)	(\$1,052)	(\$67)
12	\$436	(\$135,847)	(\$34,582)	(\$7,681)	(\$1,080)	(\$68)
13	\$449	(\$140,841)	(\$31,967)	(\$7,625)	(\$1,206)	(\$70)
14	\$450	(\$142,802)	(\$30,279)	(\$7,519)	(\$1,135)	(\$70)
15	\$461	(\$145,735)	(\$27,314)	(\$7,457)	(\$1,252)	(\$70)
16	\$475	(\$148,205)	(\$26,448)	(\$7,481)	(\$1,249)	(\$64)
17	\$510	(\$153,206)	(\$25,166)	(\$7,586)	(\$1,245)	(\$57)
18	\$545	(\$158,084)	(\$23,953)	(\$7,638)	(\$1,240)	(\$46)
19	\$553	(\$156,845)	(\$22,990)	(\$7,515)	(\$1,213)	(\$39)
Total	\$9,124	(\$1,012,596)	(\$398,747)	(\$109,295)	(\$7,115)	(\$1,113)

Final Calculations

Final Calculations

This sheet performs the final calculations before presenting the summary results. Both net present value and internal rate of return on investment are calculated.

\bigcirc A

NET PRESENT VALUE CALCULATION

		PRESENT	ALUE OF USER	BENEFITS			PRESENT	VALUE OF USER	R BENEFITS			PRES	SENT VALUE OF USI	ER BENEFITS		Present	Present	
	Travel	Travel	Vehicle		Vehicle	Travel	Travel	(road 2) Vehicle	1	Vehicle	Travel	Travel	(road 3) Vehicle	1	Vehicle	Value of Total	Value of Total	NET
Year	Time	Time	Op. Cost	Accident	Emission	Time	Time	Op. Cost	Accident	Emission	Time	Time	Op. Cost	Accident	Emission	User	Project	PRESENT
	Savings	Reliability	Savings	Reductions	Reductions	Savings	Reliability	Savings	Reductions	Reductions	Savings	Reliability	Savings	Reductions	Reductions	Benefits	Costs	VALUE
	ction Period																	
2																\$0 \$0	\$78,143,333 \$49.839.744	(\$78,143,333) (\$49,839,744)
3	-															\$0	\$47,922,830	(\$47,922,830)
4	-															\$0	\$0	\$0
5																\$0	\$0	\$0
6																\$0	\$0	\$0
7																\$0	\$0	\$0
- 8																\$0	\$0	\$0
Project																		
1	\$2,982,262	\$669,180	\$2,439,485	\$2,672,895	\$150,010											\$8,913,831	\$8,890	\$8,904,941
3	\$3,286,656 \$3,596,322	\$1,157,904 \$1,571,235	\$2,417,515 \$2,262,001	\$2,634,066 \$2,594,271	\$149,880 \$111.561											\$9,646,021 \$10,135,389	\$8,548 \$8,219	\$9,637,473 \$10,127,170
4	\$3,990,322	\$1,571,235	\$2,262,001	\$2,553,640	\$92.768											\$10,135,369	\$7,903	\$10,648,892
5	\$4.232.512	\$2,270,578	\$2,161,413	\$2,553,640	\$56.924											\$10,656,795	\$7,599	\$10,646,692
6	\$4,559,739	\$2,578,732	\$1.885.125	\$2,470,356	\$35,933											\$11,529,884	\$7,307	\$11,522,577
7	\$4.893.649	\$2,867,268	\$1,688,118	\$2,427,925	(\$5,015)											\$11.871.945	\$7,026	\$11,864,919
8	\$5,234,798	\$3,139,941	\$1,573,596	\$2,385,104	(\$66,125)											\$12,267,314	\$6,756	\$12,260,559
9	\$5,583,837	\$3,399,557	\$1,381,135	\$2,341,985	(\$104,870)											\$12,601,644	\$6,496	\$12,595,148
10	\$5,941,521	\$3,648,317	\$1,263,307	\$2,298,655	(\$124,105)											\$13,027,694	\$6,246	\$13,021,448
11	\$6,308,725	\$3,888,024	\$1,073,240	\$2,255,193	(\$161,510)											\$13,363,672	\$6,006	\$13,357,666
12	\$6,686,459	\$4,120,210	\$978,338	\$2,211,674	(\$178,823)											\$13,817,858	\$5,775	\$13,812,083
13	\$7,075,882	\$4,346,223	\$933,413	\$2,168,167	(\$181,260)											\$14,342,424	\$5,553	\$14,336,872 \$14,892,803
14 15	\$7,478,329 \$7,895,331	\$4,567,292 \$4,784,564	\$909,141 \$870.925	\$2,124,734 \$2.081.436	(\$181,354) (\$181,367)											\$14,898,142 \$15,450,890	\$5,339 \$5,134	\$14,892,803
16	\$8,328,656	\$4,764,564	\$852,886	\$2,081,436	(\$182,972)											\$16,036,043	\$4,936	\$16,031,107
17	\$8,780,337	\$5,212,138	\$823,685	\$1,995,451	(\$186,749)											\$16,624,861	\$4,746	\$16,620,114
18	\$9,252,730	\$5,424,640	\$795,082	\$1,952,859	(\$190,416)											\$17,234,896	\$4,564	\$17,230,332
19	\$9,748,568	\$5,637,803	\$793,972	\$1,910,593	(\$188,048)											\$17,902,888	\$4,388	\$17,898,499
20	\$10,271,035	\$5,852,837	\$787,848	\$1,868,688	(\$184,201)											\$18,596,206	\$4,220	\$18,591,987
Total	\$126,048,849	\$72,073,065	\$27,903,811	\$45,498,311	(\$1,519,741)	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$270,004,295	\$176,031,558	\$93,972,737
	12,584,479	Person-Hours of	Γime Saved				Person-Hours of	Time Saved				Person-Hours of	Time Saved					
	tons	\$ PV				tons	\$ PV				tons	\$ PV						
	196		CO Saved		I			CO Saved				Ţ	CO Saved					
	(33,172)	(\$1,012,596)						CO ₂ Saved					CO ₂ Saved					
	(48)	(\$398,747)						NO _x Saved					NO _x Saved					
	(2)	(\$109,295)						PM ₁₀ Saved					PM ₁₀ Saved					
								PM _{2.5} Saved										
	(2)		PM _{2.5} Saved										PM _{2.5} Saved					
	(0)		SO _X Saved					SO _X Saved					SO _X Saved					
	(2)	(\$1,113)	VOC Saved					VOC Saved					VOC Saved					
	\$20.218.250	\$15,273,189	\$1,440,421	\$4.094.848	(\$1.093.382)											Freight Benefits Only		
	\$20,210,200	ψ10,210,100	¥1,770,721	ψ1,337,070	(ψ1,000,002)											1. roight Bollelita Olly		

В

INTERNAL RATE OF RETURN ON INVESTMENT AND PAYBACK PERIOD

		USER BENEF	TITS IN CONSTAN	NT DOLLARS			USER BENE	TITS IN CONSTA	NT DOLLARS			USER B	ENEFITS IN CONST	ANT DOLLARS			Total		011MIII 47N/F
Year	Travel Time	Travel Time	Vehicle Op. Cost	Accident	Vehicle Emission	Travel Time	Travel Time	(road 2) Vehicle Op. Cost	Accident	Vehicle Emission	Travel Time	Travel Time	(road 3) Vehicle Op. Cost	Accident	Vehicle Emission	Total User Benefits in Constant	Project Costs in Constant	ANNUAL RETURNS ON	CUMULATIVE RETURNS AFTER
0 1 11 5	Savings	Reliability	Savings	Reductions	Reductions	Savings	Reliability	Savings	Reductions	Reductions	Savings	Reliability	Savings	Reductions	Reductions	Dollars	Dollars	INVESTMENT	PROJ OPENS
Construction Pe	riod T															Φ0.1	A70 440 000 I	/Φ 7 0 440 000\	
1																\$0 \$0	\$78,143,333	(\$78,143,333)	
2																\$0 \$0	\$51,833,333 \$51,833,333	(\$51,833,333) (\$51,833,333)	
																ΦU ΦΩ	\$01,000,000	(\$01,000,000) ¢0	
5	1															\$0	\$0 \$0	Φ0 0.2	
6	1															\$0 \$0	\$0 \$0	\$0 \$0	
7	1															\$0	\$0	\$0	
8	1															\$0	\$0	\$0	
Project Open																72		, ,	
1	\$3,354,639	\$752,736	\$2,744,088	\$3,006,643	\$168,741											\$10,026,847	\$10,000	\$10,016,847	\$10,016,847
2	\$3,844,923	\$1,354,584	\$2,828,150	\$3,081,485	\$175,339											\$11,284,481	\$10,000	\$11,274,481	\$21,291,328
3	\$4,375,475	\$1,911,648	\$2,752,070	\$3,156,327	\$135,730											\$12,331,250	\$10,000	\$12,321,250	\$33,612,578
4	\$4,949,298	\$2,451,521	\$2,734,878	\$3,231,169	\$117,380											\$13,484,246	\$10,000	\$13,474,246	\$47,086,824
5	\$5,569,697	\$2,987,926	\$2,649,743	\$3,306,011	\$74,909											\$14,588,286	\$10,000	\$14,578,286	\$61,665,110
6	\$6,240,317	\$3,529,173	\$2,579,923	\$3,380,853	\$49,176											\$15,779,442	\$10,000	\$15,769,442	\$77,434,552
7	\$6,965,189	\$4,081,016	\$2,402,719	\$3,455,694	(\$7,139)											\$16,897,479	\$10,000	\$16,887,479	\$94,322,031
8	\$7,748,780	\$4,647,880	\$2,329,307	\$3,530,536	(\$97,882)											\$18,158,622	\$10,000	\$18,148,622	\$112,470,653
9	\$8,596,060	\$5,233,462	\$2,126,194	\$3,605,378	(\$161,442)											\$19,399,652	\$10,000	\$19,389,652	\$131,860,304
10	\$9,512,566	\$5,841,074	\$2,022,595	\$3,680,220	(\$198,697)											\$20,857,758	\$10,000	\$20,847,758	\$152,708,063
11	\$10,504,491	\$6,473,846	\$1,787,023	\$3,755,062	(\$268,926)											\$22,251,496	\$10,000	\$22,241,496	\$174,949,558
12	\$11,578,783	\$7,134,870	\$1,694,165	\$3,829,904	(\$309,664)											\$23,928,059	\$10,000	\$23,918,059	\$198,867,617
13	\$12,743,264	\$7,827,302	\$1,681,023	\$3,904,746	(\$326,439)										***************************************	\$25,829,896	\$10,000	\$25,819,896	\$224,687,513
14	\$14,006,769	\$8,554,452	\$1,702,804	\$3,979,588	(\$339,673)											\$27,903,940	\$10,000	\$27,893,940	\$252,581,453
15	\$15,379,320	\$9,319,856	\$1,696,475	\$4,054,430	(\$353,285)											\$30,096,796	\$10,000	\$30,086,796	\$282,668,249
16	\$16,872,329	\$10,127,357	\$1,727,791	\$4,129,272	(\$370,667)											\$32,486,082	\$10,000	\$32,476,082	\$315,144,330
17	\$18,498,846	\$10,981,188	\$1,735,379	\$4,204,113	(\$393,453)											\$35,026,074	\$10,000	\$35,016,074	\$350,160,404
18	\$20,273,872	\$11,886,055	\$1,742,123	\$4,278,955	(\$417,225)											\$37,763,780	\$10,000	\$37,753,780	\$387,914,184
19	\$22,214,725	\$12,847,246	\$1,809,279	\$4,353,797	(\$428,518)											\$40,796,529	\$10,000	\$40,786,529	\$428,700,713
20	\$24,341,518	\$13,870,749	\$1,867,135	\$4,428,639	(\$436,542)											\$44,071,499	\$10,000	\$44,061,499	\$472,762,212
T -4-1	#007 F70 004	#404 040 000 I	¢40,040,005	Ф74 050 000 I	(#0.000.075)			**	I 60	40	*		1 **		40	£470.000.040	6400 040 000	¢000 050 040	
Total	\$227,570,861	\$131,813,939	\$42,612,865	\$74,352,822	(\$3,388,275)	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$472,962,212	\$182,010,000	\$290,952,212	

Years After Constructio	ANNUAL RETURNS ON
Begins	INVESTMENT
1	(\$78,143,333)
2	(\$51,833,333)
3	(\$51,833,333)
4	\$10,016,847
5	\$11,274,481
6	\$12,321,250
7	\$13,474,246
8	\$14,578,286
9	\$15,769,442
10	\$16,887,479
11	\$18,148,622
12	\$19,389,652
13	\$20,847,758
14	\$22,241,496
15	\$23,918,059
16	\$25,819,896
17	\$27,893,940
18	\$30,086,796
19	\$32,476,082
20	\$35,016,074
21	\$37,753,780
22	\$40,786,529
23	\$44,061,499
24	\$0
25	\$0
26	\$0
27	\$0
28	\$0

]

Total Construction Costs

\$181,810,000

Payback Period

12 years

The PAYBACK PERIOD is the construction costs. For a projec recovered. The Payback Period